Quick notes on Orbital Angular Momentum

Zach Meisel Ohio University - ASTR4201 - Fall 2020

Energy Quantization in Hydrogen

 Back in Quantum Mechanics, you likely suffered through finding the eigenvalues of the Hydrogen atom.
There are more fun semi-classical ways to guess the result. Below is one.

There are more full semi-classical ways to guess the result. Delow is

- The kinetic energy of the electron is $E = \frac{1}{2}m\left(\frac{2\pi r}{\tau}\right)^2$
 - From Kepler's 3rd law, $\tau^2 \propto r^3 \dots$ so, $E \propto r^{-1}$
 - For an equilibrium orbit, $\frac{mv^2}{r} = \frac{q^2}{r^2} \to mv^2r = q^2 \to L^2 = mrq^2 \to L^2 \propto r$
 - So, $E \propto L^{-2}$
- Our electron particle is also a wave with $\lambda = \frac{h}{mv} = \frac{hr}{L}$
 - For a standing wave, one orbit is an integer number of wavelengths: $n\lambda = 2\pi r$ • So $n\frac{hr}{L} = 2\pi r$...meaning $L = n\hbar$
- Therefore, $E \propto n^{-2}$, as found empirically and through QM

Key Role of Orbital Angular Momentum

- Why do semi-classical methods based on orbital angular momentum work?
- The electrostatic potential is spherically symmetric, $U \propto r^{-1}$, so it doesn't change when you rotate the hydrogen atom
- Noether's theorem tells us that L is therefore conserved
- (an analogue of) The Ehrenfest theorem tells us that the time-averaged behavior of the QM operator for L will follow the behavior of the classical L
- ...which jives with the Correspondence gut feeling Principle of Bohr that QM calculations reproduce classical calculations for large quantum numbers

"An expert is a person who has found out by their own painful experience all the mistakes that one can make in a very narrow field"

Degeneracy of Hydrogen Atom Energy Levels

- Why are there $4n^2$ states for each energy E_n ?
- For any state, the proton and electron can independently either be spin-up or spin-down, creating 4 combinations
- A long time ago, you (painfully) solved the Hydrogen atom eigenfunctions with QM and found $\psi_{nlm} = R_{nl}(r)Y_l^m(\theta, \varphi)$, where n is the principal quantum number and $n > l \ge |m| \ge 0 \dots$ so $l_{\max} = n 1$
 - Roughly, n is the size of the orbital, l is it's shape, and m is its orientation
- Since m runs from -l through 0 to l, there are 2l + 1 for each m
- So, for each n, we have $\sum_{l=0}^{n-1} 2l + 1 = 1 + 3 + 5 + 7 + \dots + 2n 1 = n^2$ via the odd number theorem
- So, there are $4n^2$ states with energy $E = -13.6n^{-2}$ eV