Quick notes on Orbital Angular Momentum

Zach Meisel
Ohio University - ASTR420I - Fall 2020

Energy Quantization in Hydrogen

- Back in Quantum Mechanics, you likely suffered through finding the eigenvalues of the Hydrogen atom.
There are more fun semi-classical ways to guess the result. Below is one.
- The kinetic energy of the electron is $E=\frac{1}{2} m\left(\frac{2 \pi r}{\tau}\right)^{2}$
- From Kepler's $3^{\text {rd }}$ law, $\tau^{2} \propto r^{3} \ldots$ so, $E \propto r^{-1}$
- For an equilibrium orbit, $\frac{m v^{2}}{r}=\frac{q^{2}}{r^{2}} \rightarrow m v^{2} r=q^{2} \rightarrow L^{2}=m r q^{2} \rightarrow L^{2} \propto r$
- So, $E \propto L^{-2}$
- Our electron particle is also a wave with $\lambda=\frac{h}{m v}=\frac{h r}{L}$
- For a standing wave, one orbit is an integer number of wavelengths: $n \lambda=2 \pi r$
- So $n \frac{h r}{L}=2 \pi r \quad$...meaning $L=n \hbar$
- Therefore, $E \propto n^{-2}$, as found empirically and through QM

Key Role of Orbital Angular Momentum

- Why do semi-classical methods based on orbital angular momentum work?
- The electrostatic potential is spherically symmetric, $U \propto r^{-1}$, so it doesn't change when you rotate the hydrogen atom
- Noether's theorem tells us that L is therefore conserved
- (an analogue of) The Ehrenfest theorem tells us that the time-averaged behavior of the QM operator for L will follow the behavior of the classical L
- ...which jives with the Correspondence gut feeling Principle
 of Bohr that QM calculations reproduce classical calculations for large quantum numbers

Degeneracy of Hydrogen Atom Energy Levels

- Why are there $4 n^{2}$ states for each energy E_{n} ?
- For any state, the proton and electron can independently either be spin-up or spin-down, creating 4 combinations
- A long time ago, you (painfully) solved the Hydrogen atom eigenfunctions with QM and found $\psi_{n l m}=R_{n l}(r) Y_{l}^{m}(\theta, \varphi)$, where n is the principal quantum number and $n>l \geq|m| \geq 0 \ldots$ so $l_{\max }=n-1$
- Roughly, n is the size of the orbital, l is it's shape, and m is its orientation
- Since m runs from $-l$ through 0 to l, there are $2 l+1$ for each m
- So, for each n, we have $\sum_{l=0}^{n-1} 2 l+1=1+3+5+7+\cdots+2 n-1=n^{2}$ via the odd number theorem
- So, there are $4 n^{2}$ states with energy $E=-13.6 n^{-2} \mathrm{eV}$

