Quick notes on Random Walk

Zach Meisel
Ohio University - ASTR420I - Fall 2020

One-dimensional Random Walk

- Consider a hopping circle on a number line that can only jump by one space at a time, where $\Delta x= \pm 1$, and the direction of each
 hop (+ or -) is random
- The average distance traveled after N hops is $\bar{d}=\overline{\sum_{i=1}^{N} \Delta x_{i}}=\sum_{i=1}^{N} \overline{\Delta x_{i}}$
- For all steps, the average is of $+I$ and $-I$, which is zero.. so $\bar{d}=0$
- Instead, consider a measure of the magnitude of distance traveled, d^{2}
- $\overline{d^{2}}=\overline{\left(\sum_{i=1}^{N} \Delta x_{i}\right)^{2}}=\overline{\left(\sum_{i=1}^{N} \Delta x_{i}\right)\left(\sum_{i=1}^{N} \Delta x_{i}\right)}=\sum_{i=1}^{N} \overline{\Delta x_{i}^{2}}+2 \sum_{i=1}^{N} \sum_{j=1}^{N} \overline{\Delta x_{i} \Delta x_{j}}$
- For each Δx_{i}^{2}, you either have $(-I)^{2}$ or I^{2}, which are both I
- For each $\Delta x_{i} \Delta x_{j}$, the Δx are independent, so the average is over +I and -I , which is zero
- So $\overline{d^{2}}=\sum_{i=1}^{N} \overline{\Delta x_{i}^{2}}=N$
- So, we consider the average positive distance traveled from the origin to be $\sqrt{\overline{d^{2}}}=\sqrt{N}$ for step size l. For average step size l, then distance $\sim l \sqrt{N}$
- For 3D and unequal step sizes, distance traveled: $\sqrt{\frac{r^{2}}{}}=\bar{l} \sqrt{1 / 3 N}$ (Rev. Mod Phys. 1943)

One-dimensional Random Walk ...but fancier

- For the same scenario, of our N steps, say that m have been to the right and $N-m$ have been to the left, where the probability of any given step going right is p_{r} and going left is $1-p_{r}$.
- Probability of a sequence of steps is the probability of having m right steps and $N-m$ left steps: $p_{r}^{m}\left(1-p_{r}\right)^{N-m}$
- But we could have taken many different sequences to wind up at m steps right, where the total number of sequences is the " N choose m " problem of combinatorics, where the answer is the binomial coefficient $\binom{N}{m}=\frac{N!}{m!(N-m)!}$
- So, $p_{N}\left(m ; p_{r}\right)=\frac{N!}{m!(N-m)!} p_{r}^{m}\left(1-p_{r}\right)^{N-m}$, the binomial distribution
- $\bar{m}=N p_{r}$
- $\sigma_{m}^{2}=\overline{m^{2}}-\bar{m}^{2}=N p_{r}\left(1-p_{r}\right)$

