Quick notes on Random Walk

Zach Meisel Ohio University - ASTR4201 - Fall 2020

One-dimensional Random Walk

• Consider a hopping circle on a number line that can only jump by one space at a time, where $\Delta x = \pm 1$, and the direction of each hop (+ or -) is random

- The average distance traveled after N hops is d
 = Σ_{i=1}^N Δx_i = Σ_{i=1}^N Δx_i
 For all steps, the average is of +1 and -1, which is zero ...so d
 = 0
- Instead, consider a measure of the magnitude of distance traveled, d^2

•
$$\overline{d^2} = \left(\sum_{i=1}^N \Delta x_i\right)^2 = \overline{\left(\sum_{i=1}^N \Delta x_i\right)\left(\sum_{i=1}^N \Delta x_i\right)} = \sum_{i=1}^N \overline{\Delta x_i^2} + 2\sum_{i=1}^N \sum_{j=1}^N \overline{\Delta x_i \Delta x_j}$$

- For each Δx_i^2 , you either have $(-1)^2$ or 1^2 , which are both 1
- For each $\Delta x_i \Delta x_j$, the Δx are independent, so the average is over +1 and -1, which is zero • So $\overline{d^2} = \sum_{i=1}^{N} \overline{\Delta x_i^2} = N$
- So, we consider the average positive distance traveled from the origin to be $\sqrt{\overline{d^2}} = \sqrt{N}$ for step size I. For average step size l, then distance $\sim l\sqrt{N}$
- For 3D and unequal step sizes, distance traveled: $\sqrt{r^2} = \bar{l}\sqrt{1/_3N}$ (Rev. Mod Phys. 1943)

One-dimensional Random Walk ... but fancier

- For the same scenario, of our N steps, say that m have been to the right and N m have been to the left, where the probability of any given step going right is p_r and going left is $1 p_r$.
- Probability of a sequence of steps is the probability of having m right steps and N m left steps: $p_r^m (1 p_r)^{N-m}$
- But we could have taken many different sequences to wind up at m steps right, where the total number of sequences is the "N choose m" problem of combinatorics, where the answer is the binomial coefficient $\binom{N}{m} = \frac{N!}{m!(N-m)!}$

• So,
$$p_N(m; p_r) = \frac{N!}{m!(N-m)!} p_r^m (1-p_r)^{N-m}$$
,
the binomial distribution

•
$$\overline{m} = Np_r$$

• $\sigma_m^2 = \overline{m^2} - \overline{m}^2 = Np_r(1 - p_r)$

