Homework Assignment 2

Corresponds to Chapter 2 of "To Build a Star" (TBS) by E.F. Brown

- 1. *See below* Team: 1 Lead: Anthony The ocean's density only changes by 5% from surface to ocean floor. How much does gravity change? Assume the ocean floor is 2 miles below the surface.
- 2. TBS exercise 2.1 Team: 2 Lead: Michael
- See below Team: 3 Lead: Ryan Calculate the weight of a column of air above a 1 m² area at sea level. Calculate the same above a 1 in² area. Finally, calculate the weight of earth's atmosphere.
- 4. TBS exercise 2.2 Team: 4 Lead: Jacob Hint: Recast density in terms of pressure. Note that you then have a first order homogeneous linear equation. Consult the solutions for common differential equations, e.g. in your math methods textbook.
- See below Team: 1 Lead: Britt Calculate the average molecular mass of dry air, approximating the atmosphere as 78% nitrogen, 21% oxygen, 0.95% argon, and 0.05% carbon dioxide. Keep in mind that nitrogen and oxygen are diatomic gases in earth's atmosphere.
- 6. See below Team: 2 Lead: Sam Solve TBS exercise 2.3, as well as the following question. The sun is ~70% hydrogen, ~28% ~2% metals, which we denote by X=0.70, Y=0.28, Z=0.02. If we treat the metals as ¹⁴N, what is he mean molecular weight of the solar composition?

7.	TBS exercise 2.4	Team: 3	Lead: Josh
8.	TBS exercise 2.5	Team: 4	Lead: Gula
9.	TBS exercise 2.6	Team: 5	Lead: Justin
10.	TBS exercise 2.7	Team: 1	Lead: Gavin
11.	TBS exercise 2.8	Team: 2	Lead: Quinn
12.	TBS exercise 2.9	Team: 3	Lead: Harshil

13. TBS exercise 2.10 Team: 5 Lead: Robert Hints: For part 4, "lowest order in δR/R" means to expand such that γ isn't in an exponent anymore. For part 5, (1+δR/R)² ~ (1+2*δR/R) and (1+δR/R)⁻² ~ (1-2*δR/R). For part 6, consider the equation of motion for common systems (e.g. a spring).