Corresponds to Chapter 3 of "To Build a Star" (TBS) by E.F. Brown

1. TBS exercise 3.1 Team: 1 Lead: Britt
2. TBS exercise 3.2 Team: 2 Lead: Sam
3. TBS exercise 3.3 Team: 3 Lead: Harshil

Hint: Consult solutions for linear first order differential equations.
4. TBS exercise 3.4 Team: 4 Lead: Gula

Hint: Consult the solution for common first order differential equations.
5. TBS exercise 3.5 Team: 1 Lead: Anthony
6. TBS exercise 3.6 Team: 2 Lead: Michael
7. TBS exercise 3.7 Team: 5 Lead: Justin

Hint: Chapter 1 briefly discussed the radiative energy density, which is the total radiative energy divided by the volume.
8. TBS exercise 3.8 Team: 5 Lead: Robert
9. TBS exercise 3.9 Team: 3 Lead: Josh
10. TBS exercise 3.10 Team: Lead: Gavin
11. TBS exercise 3.11 Team: 3 Lead: Ryan
12. TBS exercise 3.12 Team: 2 Lead: Quinn

Hints: For the first part, keep in mind that $P o(\mu)=1$ and that any function is equal to itself multiplied by 1. For the second part, trigonometric identities and u-substitution are your friend.
13. TBS exercises 3.13-14 Team: 4 Lead: Jacob

Hints: Consult Boxes 3.1 and 3.2.
[top view]

push diameter $=1$
number of pucks $=N$
box length 2 wat $=L$
estimate mean free path, \& Problem 3.1
need to show how probability equation wonks for 2D:
\Rightarrow have area concrase equivalent to ratio of $\frac{\text { puck diameter }}{\text { loath trancod }}$

$$
\Rightarrow P=\frac{\text { [obisocte dianstor] }}{\text { [puck Rioter] }}
$$

\Rightarrow [ava curved by puck] $=$ [puck dicemenory $*$ [length traveled]
 because I find using $\&$ Pin two different these, contusing)
\Rightarrow for $P=1, K=$ mean sure path $=l$

$$
\Rightarrow \quad \frac{L^{2}}{N d}=l
$$

$$
\Rightarrow d=1, \text { so, } \quad l=\frac{L^{2}}{N}
$$

Samuel Fehringer
ASTR 4201
3.2 In the Sun, free electrons scatter photons.

The cross-section for this is...

$$
\sigma_{T h}=\left(\frac{8 \pi}{3}\right)\left(\frac{e^{2}}{m_{e} c^{2}}\right)^{2}=6.65 \times 10^{-29} \mathrm{~m}^{2}
$$

What is the mean free path against this process for a photon at the average density of the solar interior?

$$
\begin{aligned}
& u_{0}=0.617 \quad m_{0}=1.198 \times 10^{57} \mathrm{cmu} \quad v_{0}=1.4 \times 10^{27} \mathrm{~m}^{3} \\
& n_{0}=1.387 \times 10^{30} \text { particles } / \mathrm{m}^{3}
\end{aligned}
$$

mean free path $l=\frac{1}{n \sigma}=0.0108 \mathrm{~m}$

$$
\begin{aligned}
& \Delta I_{v}=-n \sigma I_{u} \Delta S \\
& n=\text { density of } \\
& \text { obstacles } \\
& d I_{v}=-n_{\sigma} I_{v} d S \\
& \sigma=\text { cross-sectional } \\
& \int_{I_{0}}^{I_{0}} \frac{d I_{v}}{I_{v}}=-n \sigma \int_{0}^{s} d s \\
& \ln \left(\frac{I_{v}}{I_{0}}\right)=-n \sigma(s) \\
& \left(n \sigma=k_{v}^{\text {hs }} e\right) \\
& \ln \binom{I_{v}}{I_{0}}=-k_{v}^{a \operatorname{ats} p(s)} \\
& I_{v}=I_{0} e^{\left(-k_{v}^{\operatorname{aos}} p(s)\right)} \\
& I_{v}=\frac{1}{e} \cdot I_{0} \\
& \frac{\pi_{0}}{e}=\pi_{0} e^{\left(-k_{v}^{a h s} e(s)\right)} \\
& e^{-1}=e^{\left(-k b^{a t s} p(s)\right)} \\
& \text { (taking in) } \\
& -1=-k_{i}^{a l s} \rho(s) \\
& S=\frac{1}{k_{u}^{\operatorname{des}} p}
\end{aligned}
$$

$$
\begin{align*}
& 3.4 \\
& \frac{d I_{\nu}}{d s}=9 J_{\nu}-9 k_{\nu}^{a b s} I_{\nu} \\
& d I_{\nu}^{\prime}+9 k_{\nu}^{a b s} I_{\nu}=9 J_{\nu} \tag{1}
\end{align*}
$$

this is $1^{\text {st }}$ order differential equation

$$
y^{\prime}+p(x) y=q(x)
$$

we can solve eq (1) as follow

$$
I=\int_{e} p(x) \cdot d x
$$

In eq (i) $p(x)=3 k_{\nu}^{a b s}$

$$
I=e^{\int_{\rho} k_{\nu}^{a b s}} \cdot d s
$$

$$
\begin{equation*}
I=e^{s k_{\nu}^{a b s}} \tag{2}
\end{equation*}
$$

multiply both sides of equation (1) by eq (2)

$$
\begin{align*}
& e^{\rho k_{\nu}^{a b s} \cdot s}\left(I_{\nu}^{\prime}+\rho k_{\nu}^{a b s} I_{\nu}\right)=s J_{\nu} e^{\rho k_{\nu}{ }^{a b s} \cdot s} \\
& I_{\nu}^{\prime} e^{\rho k_{\nu}^{a b s} \cdot s}+\rho k_{\nu}^{a b s} I_{\nu} e^{\rho k_{\nu}^{a b s} \cdot s}={ }^{a}+3 J_{\nu} e^{s k_{\nu}^{a b s} \cdot s} \ldots(3)
\end{align*}
$$

\square

- We can 'rewrite eq(3) as

$$
\begin{align*}
& \frac{d}{d s}\left(I_{\nu} e^{s k_{\nu}^{a b s} \cdot s}\right)=s J_{\nu} e^{3 k_{\nu}^{a b s} \cdot s} \\
& d\left(I_{\nu} e^{3 k_{\nu}^{a b s} \cdot s}\right)=\left(s J_{\nu} e^{s k_{\nu}^{a b s} \cdot s}\right) d s \tag{4}
\end{align*}
$$

Integrating both sides .i eq (u)

$$
\begin{aligned}
I_{\nu} e^{s k_{\nu}^{a b s} \cdot s} & =\int \rho J_{\nu} e^{s k_{\nu}^{a b s} \cdot s} \cdot d s \\
& =3 J_{\nu} \int e^{s k_{\nu}^{a b s} \cdot s} \cdot d s
\end{aligned}
$$

1) now Let

$$
\begin{aligned}
& u=s k_{\nu}^{a b s} \cdot s \\
& \begin{aligned}
d u & =s k_{\nu}^{a b s} \cdot d s \Rightarrow d s=\frac{1}{s k_{\nu}^{a b s}} \cdot d u \\
& \Rightarrow I_{\nu} e^{s k_{\nu}^{a b s}} \cdot s \\
& =J_{\nu} \int \frac{1}{s k_{\nu}^{a b s}} e^{u} \cdot d u \\
& =\frac{J_{\nu}}{k_{\nu}^{a b s}} e^{u}+c \\
& =\frac{J_{\nu}}{k_{\nu}^{a b s}} e^{s k_{\nu}^{a b s}} \cdot s
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Where } c=\text { constant }=I_{0} \\
& \begin{aligned}
& I_{\nu}=\frac{J_{\nu}}{k_{\nu}}+I_{0} e^{-3 k_{\nu}} \cdot S \\
& S \longrightarrow \infty \\
& \begin{aligned}
I_{\nu} & \\
I_{\nu} & =\frac{J_{\nu}}{I_{\nu} b s}+I_{0} \\
& =\frac{e_{\nu}}{K_{\nu} b s}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

(C) HW3 Final
3.5

Using given mean free path: $h=.01 \mathrm{~m}$

$$
\begin{aligned}
& \tau_{v}=\text { optical depth }=\int_{0}^{s} \frac{d s}{l} \\
&=\frac{1}{l} \int_{0}^{s} d s \\
&=\frac{1}{l}[s]_{0}^{6.957 \times 10^{8}} \quad s=\text { radius of sur }=6.957 \times 10^{8} \mathrm{~m} \\
&=\frac{1}{.01 \mathrm{~m}}\left[6.957 \times 10^{8} \mathrm{~m}-0\right]=6.957 \times 10^{10} \mathrm{~m}=\tau_{v}
\end{aligned}
$$

should be unites, so no m as a unit

3 Homework 3

Question 7: EXERCISE 3.7 - Let's dissect eq. (3.13) to see how it sets the luminosity.

1. To keep the algebra simple, assume that F is constant throughout the star and that $a T^{4}$ is linear in r - that is, $a T^{4}=a T_{c}^{4}(1-r / R)$. Since F is constant, you can express it in terms of the luminosity at the surface L. Use this to transform eq. (3.13) into an expression for L in terms of R and T_{c} (along with ρ, κ_{R}, and c).
2. Write the luminosity as $L=E_{\gamma} / \tau$, where E_{γ} is the total radiative energy of the star, and τ some as-yet-undetermined diffusion timescale. Give an estimate of E_{γ} in terms of the mean temperature T and the radius R of the star.
3. Finally, assume that the photon mean free path $\ell=\left(\rho \kappa_{R}\right)^{-1}$ is constant. Substitute the results from parts 1 and 2 into equation (3.13). After simplifying, you should end up with a simple expression for τ in terms of c, R, and ℓ. For Thomson scattering, what is τ (express in years)?
4. Since F is a constant throughout the star and is the luminosity L over the area A,

$$
\begin{array}{r}
F=\frac{L}{A}=\frac{L}{4 \pi R^{2}} \\
F=-\frac{1}{3} \frac{c}{\rho \kappa_{R}} \frac{d}{d r} a T^{4} \tag{24}
\end{array}
$$

and $a T^{4}=a T_{c}^{4}(1-r / R)$ giving

$$
\begin{equation*}
L=\frac{4 \pi}{3} \frac{c}{\rho \kappa_{R}} a R T_{c}^{4} \tag{26}
\end{equation*}
$$

2. Solving for E_{γ}, and realizing that the radiative energy density U is

$$
\begin{equation*}
U=a T_{c}^{4}=\frac{E_{\gamma}}{\frac{4 \pi}{3} R^{3}} \tag{27}
\end{equation*}
$$

and hence E_{γ} is

$$
\begin{equation*}
E_{\gamma}=\frac{4 \pi}{3} a R^{3} T_{c}^{4} \tag{28}
\end{equation*}
$$

making the luminosity L

$$
\begin{equation*}
L=\frac{4 \pi}{3 \tau} a R^{3} T_{c}^{4} \tag{29}
\end{equation*}
$$

3. Setting the equations for the luminosity equal to each other,

$$
\begin{equation*}
\frac{4 \pi}{3 \tau} a R^{3} T_{c}^{4}=\frac{4 \pi}{3} \frac{c}{\rho \kappa_{R}} a R T_{c}^{4} \tag{30}
\end{equation*}
$$

keeping in mind that $\ell=\left(\rho \kappa_{R}\right)^{-1}$ and canceling like terms,

$$
\begin{equation*}
/ 3 \pi / a X_{c}^{4} \frac{R^{\beta 2}}{\tau}=\frac{4 \pi}{3} a X_{c}^{4} \not R \ell c \tag{31}
\end{equation*}
$$

rearranging, then τ is

$$
\begin{equation*}
\tau=\frac{R^{2}}{\ell c} \tag{32}
\end{equation*}
$$

substituting $R=R_{\odot}=696.5 \times 10^{6} \mathrm{~m}$ for the Sun, with $\ell \approx 0.01 \mathrm{~m}$ obtains $\tau \approx 5130$ y.

Comparing the two equations:

$$
F=-\frac{1}{3} c \ell \frac{\mathrm{~d} U}{\mathrm{~d} r}, \quad F=-\frac{1}{3} \frac{c}{\rho \kappa_{\mathrm{R}}} \frac{\mathrm{~d}}{\mathrm{~d} r} a T^{4}
$$

The substitution $\ell=\frac{1}{\rho \kappa_{\nu}}$ relates the mean free path to the opacity function. By changing from a function of temperature to the energy density, the mean Rossland mean opacity is exchanged for the frequency dependent version. The frequency dependence is absorbed into the mean using the black body spectrum as a weight function. This means the mean opacity depends on how the black body spectrum's shape changes across all frequencies.

$$
\frac{1}{\kappa_{\mathrm{R}}}=\left(\int_{0}^{\infty} \frac{\partial B_{\nu}}{\partial T} \mathrm{~d} \nu\right)^{-1} \int_{0}^{\infty} \frac{1}{\kappa_{\nu}} \frac{\partial B_{\nu}}{\partial T} \mathrm{~d} \nu .
$$

Problem 3.9

$$
\varepsilon\langle x:\rangle=\langle\Sigma x,\rangle
$$

Josh OlIo
1.

$$
\begin{aligned}
d & =\left\langle\text { Travel } \text { right }^{m}-\right.\text { travel } \\
& =\langle(l n-\lambda\rangle\rangle \\
& =l(n)-l\langle n-m\rangle\rangle \\
& =l\langle m\rangle-l\langle n\rangle+l\langle m\rangle \\
& =l(2\langle m\rangle-\langle n\rangle) \\
d & =l(2 n p-n)\rangle
\end{aligned}
$$

2. $\langle d\rangle=l(2 n p-n)$
$d=R$, all steps are forward so

$$
\text { 3. } \begin{aligned}
& R=e(-n) \\
& n=R / l \\
& {\left[\left\langle(m-\langle m\rangle)^{2}\right\rangle\right]^{1 / 2}=\left[n_{\text {edge }} p(1-p)\right]^{1 / 2} } \\
& R / l e=\left[n_{\text {edge }} p(1-p)\right]^{1 / 2} \\
& R^{2} / l^{2}=n_{\text {edge }} p(1-p) \\
& n_{\text {edge }}=\frac{R^{2}}{p l^{2}(1-p)}
\end{aligned}
$$

4

$$
\begin{aligned}
& d=h_{e d g e} l \\
&=\frac{R^{2}}{p l^{2}(1-p)} l \\
& d=\frac{R^{2}}{p l(1-p)} \\
& t=\frac{d}{c}=\frac{R^{2}}{c p l(1-p)}
\end{aligned}
$$

Problem 3.10

Question: Does matter with a gray opacity in thermal equilibrium also have a gray emissivity j_{ν} ?

- Matter with a gray opacity would not also have a gray emissivity. To prove this, we look at equation (3.8) which shows $\frac{j_{v}}{k_{v}^{a b s}}=B_{v}(T)$. Once we take the opacity to be gray, it will lose its frequency dependence, while the emissivity and blackbody will keep their dependence on frequency. Now that opacity has no dependence on frequency, we can show the relationship between the emissivity and absorption depth (opacity) by equation (3.21), showing $j_{v}=k^{a b s} B_{v}$. This equation will show that just because the opacity is gray, does not mean that the emissivity will also be gray.

$$
\begin{gathered}
g=\mathrm{MG/g} \\
g=1.1 \mathrm{Ms}_{s} \mathrm{G} /\left(1.1 R_{s}\right)^{2} \\
g=\frac{1}{.1} \mathrm{Ms} / \mathrm{Rs}^{2} \\
g=.91 \mathrm{gs} \\
P_{p h} \approx .91 \mathrm{~g} / \mathrm{k} \\
\mathrm{P}_{\mathrm{ph}} \approx .91 P_{p h}
\end{gathered}
$$

Pressure at photosphere of larger star is about 91 of the pressure at the Sun's
3.12.)

$$
\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\left\{\begin{array} { l l }
{ 0 } & { m \neq n } \\
{ \frac { 2 } { 2 n + 1 } } & { m = n }
\end{array} \quad \left[\begin{array}{ll}
\text { evocation } \\
3.23]
\end{array}\right.\right.
$$

show that

$$
\begin{array}{r}
\frac{1}{4 \pi} \int I d \Omega=I_{0} \quad \text { and } \quad \int \mu I d \Omega=\left(\frac{4 \pi}{3}\right) I_{1} \quad \text { for } \\
I=I_{0}+I_{1} \mu
\end{array}
$$

theta goes from 0 to π.

$$
\begin{aligned}
& \frac{1}{4 \pi} \int I d \Omega=I_{0} \text { but } I=I_{0}+I_{1} \mu \\
& \frac{1}{4 \pi} \int I d \Omega=\frac{1}{4 \pi} \iint\left(I_{0}+I_{1} \mu\right) \sin \theta d \theta d \phi
\end{aligned}
$$

rearrange integrals:

$$
\begin{aligned}
& \text { rearrange integrals: }=\frac{1}{4 \pi} \int_{0}^{\pi}\left(I_{0}+I_{1} \mu \rightarrow \sin \theta d \theta \int_{0}^{\int_{0}^{2 \pi} d} \phi_{\pi}^{2 \pi}\right. \\
& =\frac{2 \pi}{4 \pi}\left[\int_{0}^{\pi} I_{0} P_{0}(\mu) P_{0}(\mu)\right. \\
&
\end{aligned}
$$

$$
=\frac{1}{2}\left[\int_{0}^{\pi} I_{0} \sin \theta d \theta\right]
$$

$$
=\frac{1}{2}\left[I_{0}[-\cos (x)]_{0}^{\pi}\right]
$$

$$
=\frac{1}{2}\left[I_{0}[2]\right]
$$

$$
\frac{1}{4 \pi} \int I d \Omega=I_{0}
$$

$$
\begin{aligned}
& \int \mu I d \Omega=\int_{0}^{\pi} \mu\left(I_{0}+I_{1} \mu\right) \sin \theta d \theta \int_{0}^{\int_{0}^{2 \pi} d \phi_{1}} \\
& =2 \pi\left[\int_{0}^{\pi} I_{0} \mu \sin \theta d \theta+\int_{0}^{\pi} I_{1} \mu^{2} \sin \theta d \theta\right] \\
& =2 \pi[S_{0}^{\pi} I_{0} \underbrace{P_{1}(\mu) P_{0}(\mu)}_{0} \sin \theta d \theta+\int_{0}^{\pi} I_{1} \underbrace{P_{1}(\mu) P_{1}(\mu)_{1}}_{\frac{2}{2(1)+1}} \sin \theta d \theta \\
& =2 \pi\left[I_{1}, \frac{2}{3}\right. \\
& =2 \pi I_{1} \frac{2}{3} \\
S \mu I d \Omega & =\frac{4 \pi}{3} \cdot I_{1}
\end{aligned}
$$

$$
\begin{aligned}
& 3.13 \quad I_{v}(\mu, r)=I_{v, 0}(\tau)+\mu I_{v, 1}(\tau) \\
& J_{v}=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-1}^{1} I_{v} d \mu d \varphi=\frac{1}{2} \int_{-1}^{1}\left(I_{v, 0}(\tau)+\mu I_{v, i}(\tau)\right) d \mu
\end{aligned}
$$

Note: $\begin{aligned} \int_{-1}^{1} \mu d \mu & =\int_{-1}^{1} \mu^{3} d \mu=0 \\ \frac{\left(-(-1)^{2}\right.}{2} & =\frac{1-(-1)^{4}}{4}=0\end{aligned}$
and: $\int_{-1}^{1} d \mu=1-(-1)^{\prime}=2, \int_{-1}^{1} \mu^{2} d \mu=\frac{1}{3}\left(1-(1)^{3}\right)=\frac{2}{3}=\frac{1}{3} \int_{-1}^{1} d \mu$

$$
J_{V}=\frac{2}{2} I_{V, 0}(\tau)+\frac{0}{2} \cdot I_{v, 1}(\tau)=I_{v, 0}(\tau)
$$

$$
k_{v}=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-1}^{1} \mu^{2}\left(I_{v, 0}(\tau)+\mu I_{v, 1}(\tau)\right) d \mu d \varphi
$$

$$
\begin{aligned}
& =\frac{1}{4 \pi} \int_{0}^{0} \mu_{-1}^{\mu}\left(I_{\nu, 0}\right. \\
& =\frac{1}{2}\left[\int_{-1}^{1} \mu^{2} I_{v, 0}(\tau) d \mu+\int_{1}^{1} I_{\nu, 1}^{0}(\tau) d \mu\right]=\frac{1}{3} \frac{2}{2} I_{\nu, 0}(\tau)=\overline{\frac{1}{3} J_{v}}
\end{aligned}
$$

3.14)

1) Isotropiu $\Rightarrow I=$ const $=I_{0} \Rightarrow H_{V}=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int^{2} \mu^{0} I_{0} d \mu d P$

$$
\begin{aligned}
& \int_{-1}^{\int_{\mu} d p=} \frac{\frac{1-(-1)^{2}}{2}=0}{\Rightarrow H_{v}=0 \Rightarrow \quad \frac{H_{v}}{J_{v}}=0}
\end{aligned}
$$

2)

$$
\begin{aligned}
& \mu=1, I_{\nu}(\mu)=a_{v} \delta(\mu-1) \\
& J_{\nu}= \frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-}^{1} a_{\nu} \delta(\\
& \int_{-1} f(\mu) \delta(\mu-1) d \mu=f(1) \\
& f(\mu)=1 \Rightarrow \quad J_{\mu}=\frac{a_{v}}{2} \\
& H_{v}= \frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-1}^{1} \mu \mu_{v} \delta(\mu-1) d \mu d l \quad \Rightarrow H_{v}=\frac{a_{\nu}}{2} \\
& \quad f(\mu)=\mu \Rightarrow f(n)=1 \Rightarrow J_{v}=1
\end{aligned}
$$

3) $U_{V}=\frac{4 \pi}{2} J_{v} ; \quad F_{v}=4 \pi H_{v}$

$$
U(\tau)=\frac{3}{L} F\left(r+\tau_{0}\right) \quad\left[\frac{H_{v}}{J_{v}}=\frac{F_{V}}{\left(U_{v}\right.}=\frac{1}{3\left(\tau+r_{3}\right)}\right)
$$

$$
\begin{aligned}
& H_{v_{5}}(z=0)=\frac{1}{2} \\
& H_{0}(\tau=2 / 3)=\frac{1}{4}
\end{aligned}
$$

$$
\frac{H_{\nu}}{S_{0}}\left(\tau=107=\frac{1}{32}\right.
$$

$$
\begin{aligned}
& \mu=\cos \theta \quad J_{v}=\frac{1}{4 \pi} \int_{0}^{d \pi} \int_{-1}^{1} I_{\nu} d \mu d \varphi \\
& H_{v}=\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{-1}^{1} \mu I_{\nu} d \mu d \varphi
\end{aligned}
$$

