Corresponds to Chapter 2 of "To Build a Star" (TBS) by E.F. Brown

1. See below Team: 1 Lead: Anthony

The ocean's density only changes by 5% from surface to ocean floor. How much does gravity change? Assume the ocean floor is 2 miles below the surface.
2. TBS exercise 2.1 Team: 2 Lead: Michael
3. See below Team: 3 Lead: Ryan

Calculate the weight of a column of air above a $1 \mathrm{~m}^{2}$ area at sea level. Calculate the same above a $1 \mathrm{in}^{2}$ area. Finally, calculate the weight of earth's atmosphere.
4. TBS exercise 2.2 Team: 4 Lead: Jacob

Hint: Recast density in terms of pressure. Note that you then have a first order homogeneous linear equation. Consult the solutions for common differential equations, e.g. in your math methods textbook.
5. See below Team: 1 Lead: Britt

Calculate the average molecular mass of dry air, approximating the atmosphere as 78% nitrogen, 21% oxygen, 0.95% argon, and 0.05% carbon dioxide. Keep in mind that nitrogen and oxygen are diatomic gases in earth's atmosphere.
6. See below Team: 2 Lead: Sam

Solve TBS exercise 2.3, as well as the following question.
The sun is $\sim 70 \%$ hydrogen, $\sim 28 \% \sim 2 \%$ metals, which we denote by $X=0.70, Y=0.28, Z=0.02$.
If we treat the metals as ${ }^{14} \mathrm{~N}$, what is he mean molecular weight of the solar composition?
7. TBS exercise 2.4 Team: 3 Lead: Josh
8. TBS exercise 2.5 Team: 4 Lead: Gula
9. TBS exercise 2.6 Team: 5 Lead: Justin
10. TBS exercise 2.7 Team: 1 Lead: Gavin
11. TBS exercise 2.8 Team: 2 Lead: Quinn
12. TBS exercise 2.9 Team: 3 Lead: Harshil
13. TBS exercise 2.10 Team: 5 Lead: Robert

Hints: For part 4, "lowest order in $\delta R / R$ " means to expand such that γ isn't in an exponent anymore. For part $5,(1+\delta R / R)^{2} \sim\left(1+2^{*} \delta R / R\right)$ and $(1+\delta R / R)^{-2} \sim\left(1-2^{*} \delta R / R\right)$. For part 6 , consider the equation of motion for common systems (e.g. a spring).

HW prob 1

$$
\begin{aligned}
& F=\frac{\left(\pi / m_{2}\right.}{l^{2}}=m / g \\
& \frac{G m}{r^{2}}=g \\
& \frac{\frac{N_{0, \mathrm{~mol}} \mathrm{~g}}{\left(6.67 \times 10^{-11}\right)\left(5.972 \times 10^{24} \mathrm{~kg}\right)}}{\left(6.371 \times 10^{6} \mathrm{~m}\right)^{2}}=g=9.81 \mathrm{~m} / \mathrm{s} / \mathrm{s}
\end{aligned}
$$

New 2

$$
\frac{G m}{r^{2}}=g=\frac{\left(6.67 \times 10^{-11}\right)\left(5.972 \times 10^{24} \mathrm{~kg}\right)}{\left(6.368 \times 10^{6}\right)^{2}}=5.823 \mathrm{~m} / \mathrm{s} / \mathrm{s}
$$

$$
\begin{aligned}
& \frac{d P}{d s}=-P g(v)=\Delta P=P_{s}-P_{a} \\
& P_{a}=d p g(r) \quad \begin{array}{l}
\text { water is incompessibles } \\
\text { meaning its not pressure dependent, } \\
\text { so } P_{s}=0
\end{array} \\
& 1.013 \times 10^{5}=d\left(10^{3}\right)(9.81) \\
& d=10.3 \mathrm{~m}
\end{aligned}
$$

Problem 3

Question 3

Calculate the weight of a column of air above a $1 \mathrm{~m}^{2}$ area at sea level. Calculate the same above a $1 \mathrm{in}^{2}$ area. Finally, calculate the weight of earth's atmosphere.

$$
P_{0}-P(z)=\operatorname{gm}(z) / \Delta A,
$$

Weight above $1 \mathrm{~m}^{2}$:

$$
\begin{aligned}
& P_{0}=1 \mathrm{~atm}=101325 \mathrm{~Pa} \\
& \mathrm{P}(\mathrm{z})=0 \\
& \Delta \mathrm{~A}=1 \mathrm{~m}^{2} \\
& \text { Solve for gm }(\mathrm{z}) \quad \text { (Weight }=\mathrm{mg} \text {) } \\
& \operatorname{gm}(z)=P_{0} \Delta A \\
& \operatorname{gm}(z)=101325 \mathrm{~N}
\end{aligned}
$$

Weight above $1 \mathrm{in}^{2}$:

$$
\begin{aligned}
& P_{0}=1 \mathrm{~atm}=14.7 \mathrm{psi} \\
& \mathrm{P}(\mathrm{z})=0 \\
& \Delta \mathrm{~A}=1 \mathrm{in}^{2} \\
& \text { Solve for } \mathrm{gm}(\mathrm{z}) \\
& \mathrm{gm}(\mathrm{z})=\mathrm{P}_{0} \Delta \mathrm{~A} \\
& \mathrm{gm}(\mathrm{z})=14.7 \text { pounds }=65.4 \mathrm{~N}
\end{aligned}
$$

Weight of atmosphere:

$$
\begin{aligned}
& \text { Radius of Earth: } 6.371 \times 10^{6} \mathrm{~m} \\
& \text { Surface Area }=4 \pi r^{2}=5.101 \times 10^{14} \mathrm{~m}^{2} \\
& \mathrm{P}_{0}=101325 \mathrm{~Pa} \\
& \Delta A=5.101 \times 10^{14} \mathrm{~m}^{2} \\
& \mathrm{gm}(\mathrm{z})=\mathrm{P}_{0} \Delta A=5.168 \times 10^{19} \mathrm{~N}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d P}{d r}=-\rho g(r) \\
& P \equiv \rho \frac{k_{0} T}{A_{m_{c}}} \quad \text { Problem } 4 \\
& \frac{d P}{d r}=-\frac{-\left(m_{n}\right.}{x_{B} T} g(r)^{P} \\
& \int_{P_{0}}^{P} \frac{d P}{P}=\int_{0}^{Z} \frac{-A m_{u}}{k_{B} T} g d r \\
& \ln \left(P / p_{0}\right)=\frac{-A_{m a} g Z}{k_{B} T} \\
& P=P_{0} \exp \left[-z \frac{A_{m u} g}{k J T}\right] \\
& P=P_{0} e^{-z / H_{p}}, \quad H_{p}=\frac{K_{B} T}{A_{m_{u}} g} \\
& H_{p}=\frac{\left(1.38 \times 10^{-23} \mathrm{~m}^{2} 8^{2 *}\right)(288 *)}{(29.97)\left(1.661 \times 10^{-27} \times \mathrm{K}\right)\left(9.8 \mathrm{~m}^{2}\right)}=8.43 \times 10^{3} \mathrm{~m} \\
& \text { @ } 2881 \\
& z=H_{p} \Rightarrow P=P_{0} e^{-1}=P_{0} / e
\end{aligned}
$$

Atmosphere is reasonably Iso thermal...
Simple Atmospheres lecture: Temperature ranges from ~190 K to 290 K (at absolve externs) Usually woe in $\pm 50 k$ temp range
want: avg. molecular mass day air
given: atm. 78% nitrogen
21% oxygen
0.95% anger
0.05% comber dioxide
nit. \& oxy. diatonic gasses
from Ex. 2.2 in bode, know ans: $A=28.97_{4}$
atomic weights:

$$
\begin{aligned}
& N: 14.0067 u \\
& 0: 15.999 u \\
& A: 34.948 u \\
& \mathrm{CO}_{2}: 44.01 u
\end{aligned}
$$

since dian torevic, $N \rightarrow N_{2}$ and $\mathrm{O} \rightarrow \mathrm{O}_{2}$
so

$$
\begin{aligned}
& N_{2}: 14.0067 u * 2=28.9134 u \\
& O_{2}: 15.999 u * 2=31.998 u
\end{aligned}
$$

multiply by percentages:

$$
\begin{aligned}
& N_{2}: 28.0134 u * 0.78=21.850452 u \\
& O_{2}: 31.998 u * 0.21=6.71958 u \\
& \text { An: } 39.948 u * 0.0095=0.379506 u \\
& \mathrm{CO}_{2}: 44.01 u * 0.0005=0.02200 \$ u
\end{aligned}
$$

add these up:

$$
\begin{gathered}
21.850452 u+6.71958 u+0.379506 u \\
+0.022005 u
\end{gathered}
$$

and get $A \approx 28.97 u$
(same as given in bods)

Samuel Fehringer
ASTR 42012.3

What is μ for a fully ionized 4 He gas ($A=4$, with 2 electrons per atom)?

$$
\mu\left({ }^{4} \mathrm{He}^{-}+c^{-}\right)=\frac{4 m_{u} \times n}{3 n m_{u}}=\frac{4}{3}
$$

The sun is $\sim 70 \%$ hydrogen, $\sim 28 \%$ helium, and $\sim 2 \%$ metals, denoted by $x=0.70, y=0.28, z=0.02$
If we treat the metals as 14 N , what is the mean molecular weight of the solar composition?

$$
\frac{i}{\mu_{n}}=\left(\frac{1}{1}\right) 0.7+\left(\frac{1}{4}\right) 0.28+\left(\frac{1}{14}\right) 0.02 \rightarrow 1 . \overline{296}=\mu_{n}
$$

But since this is the sun...

$$
\begin{aligned}
& \frac{1}{\mu_{i}}=\left(\frac{2}{1}\right) 0.7+\left(\frac{3}{4}\right)+\left(\frac{1}{2}\right)^{*} 0.02 \rightarrow 0.617=\mu_{i}
\end{aligned}
$$

$*_{\frac{1}{2}}$ is used because heavier elements will have ~ the same number of protons and neutrons

ASTR 4201 HW \#2
Josh Olson

$$
m(r)=4 \pi \int_{0}^{r} \rho(r) r^{2} d r
$$

Assuming constant density, $p(r)=P_{c}$.

$$
\begin{aligned}
m(r) & =4 \pi \int_{0}^{\Delta r} \rho_{c} r^{2} d r \\
m(\Delta r) & =\frac{4}{3} \pi \rho_{c}(\Delta r)^{3} \\
\lim _{\Delta r \rightarrow 0} m(\Delta r) & =\frac{4}{3} \pi \rho_{c}(0)^{3}=0
\end{aligned}
$$

At the center $(r-\infty), m(r)=0$. This is because there is no mass interior to the center (no point can be "interior" of the center).

$$
\begin{aligned}
\lim _{r \rightarrow 0} g(\Delta r) & =\frac{6 \lim _{r \rightarrow 0} m(\Delta r)}{(\Delta r z} \\
& =\frac{6(0)}{(\Delta r)^{2}}=0
\end{aligned}
$$

At the center, $g(r)=0$ as well.

$$
\begin{aligned}
\frac{d P}{d r} & =-\rho \frac{G \lim _{r \rightarrow 0} m(r)}{r^{2}} \\
& =-\rho \frac{G(0)}{r^{2}} \\
\frac{d T}{d r} & =0 \text { at the center. }
\end{aligned}
$$

1. $\quad \rho(r)=P C$

Mass function can be obtained

$$
\begin{align*}
& \text { Using eq }(2,6) \\
& m(r)=4 \pi \int_{0}^{r} \rho(r) r^{2} d r \\
&=4 \pi \rho_{c} \int_{0}^{r} r^{2} d r \\
&=\left.4 \pi \rho_{c} \frac{r^{3}}{3}\right|_{0} ^{r} \\
&=\frac{4 \pi}{3} r^{3} \rho_{c} \ldots . \tag{1}
\end{align*}
$$

The Volume is a sphere
Since the density is constant we can express eq (1) through the global stellar parameters M and R.

$$
s_{c}=\frac{M}{V}=\frac{M}{\frac{4 \pi}{3} R^{3}}
$$

2.

$$
\begin{aligned}
m(r) & =4 \pi \int_{0}^{r} \rho(r) r^{2} d r \\
m(r) & =4 \pi_{0}^{r} \frac{M}{\frac{4 \pi}{3} R^{3}} \cdot r^{2} d r \\
& =\frac{M}{\frac{1}{3} R^{3}} \frac{r^{3}}{3} \\
m(r) & =\frac{M r^{3}}{R^{3}} \cdots 2
\end{aligned}
$$

3. Pressure at surface, $P(\dot{R})=0$

$$
\begin{aligned}
d p_{p}=-\rho & \frac{G \cdot m(r)}{r^{2}} d r \\
\int_{P_{c}(r=0)}^{p(R)} d p & =-\frac{M}{\frac{4}{3} \pi R^{3}} \cdot \frac{M}{R^{3}} \int_{0}^{r^{3}} \frac{r^{2}}{r^{2}} \cdot d r \\
p_{(R)}-p_{c}(r=0) & =-\frac{M}{\frac{4}{3} \pi R^{6}} 4 \frac{R x}{2} \\
\forall P_{c}(r=0) & =+\frac{3}{8 \pi} \cdot \frac{M^{2}}{R^{4}} G \\
P_{c}(r=0) & =\frac{3}{8 \pi} \frac{M^{2}}{R^{4}} G
\end{aligned}
$$

4.

$$
\begin{aligned}
& \rho_{c}=\frac{\mu}{\frac{4 \pi}{3} R^{3}} \cdot(1) \\
& P_{c}=1 \cdot \frac{31}{8 \pi} \frac{\mu^{2}}{R^{4}} G \ldots 3 \\
& P_{c}=\rho_{c}\left(\frac{k_{B}}{\mu m_{u}}\right) T_{c} \ldots 2 \cdot s \\
& P_{c}=\frac{3}{4 \pi \cdot 2} \cdot \frac{M}{R^{3}} \frac{\mu}{R^{2}} G \\
&=\frac{M}{3 \pi} \cdot \frac{M}{2 R^{2}} G \\
&=\frac{G M}{2 R} \cdot s_{c} \\
& P_{c}=s_{c} \frac{k B}{\mu m_{u}} T_{c} \\
& \frac{G M}{2 R} g_{c}=s_{c} \frac{K_{B}}{\mu m_{u}} T_{c}
\end{aligned}
$$

$$
\begin{aligned}
& T C=\frac{G M m_{C} M}{2 k_{B}} \frac{M}{R} \ldots .4 \\
& \text { for } M=M_{0}, \quad R=R_{0}, \mu=0.6 \\
& M_{0}=1.99 * 10^{30} \mathrm{~kg} \\
& \mu=\text { mean molecuter } \\
& \text { weight. } \\
& R_{\odot}=6.96 * 10^{8} \mathrm{~m} \\
& m_{u}=\text { hast muss of one atomic mass } \\
& \text { int } \\
& 1 u=1.661 * 16^{-27} \mathrm{~kg} \text {. } \\
& K_{B}=1.380649 * 10^{-23} \mathrm{~J} \cdot \mathrm{k}^{-1} \\
& G=6.67 * 10^{-11} \mathrm{~N} \mathrm{~kg}^{-2} \mathrm{~m}^{2}
\end{aligned}
$$

putting the constants in eq (4) we get.

$$
T \overline{1 c}=7.6 * 10^{6} \mathrm{~K}
$$

Tm actual value is

$$
T_{c}=14.4 * 10^{6} \mathrm{~K}
$$

constant density model give the

2 Homework 2

Question 9: Exercise 2.6 - The central temperature T_{c} is a measure of the average kinetic energy of a particle at the stellar center. Use the central temperature that you found for the constant density star in exercise 2.5 and estimate the time that such a particle would take to cross a distance R. How does this time compare to the orbital period of a satellite orbiting just outside the stellar surface?

Solving (2.5)

$$
\begin{array}{r}
P=\frac{M^{2}}{R^{4}} \frac{3 G}{8 \pi} \\
P=\frac{\rho k_{B}}{\mu m_{u}} T \\
T=\frac{\mu m_{u}}{\rho k_{B}} \frac{M^{2}}{R^{4}} \frac{3 G}{8 \pi}=\frac{1}{2} \frac{\mu m_{u}}{k_{B}} \frac{G M}{R} \tag{12}
\end{array}
$$

nets $T=6.9 \times 10^{6} \mathrm{~K}$ for the central temperature using $R=R_{\odot}=696 \times 10^{6}$ m and $M=M_{\odot}=2 \times 10^{30} \mathrm{~kg}$. Using the equation for the average kinetic energy of a particle in an ideal gas,

$$
\begin{equation*}
T_{A V}=\frac{3}{2} k_{B} T \tag{13}
\end{equation*}
$$

and obtaining the velocity,

$$
\begin{align*}
v_{A V}=\sqrt{\frac{2 T_{A V}}{m_{u}}} & =\sqrt{\frac{3 k_{B} T}{m_{u}}} \tag{14}\\
& =\sqrt{\frac{3 G \mu m_{u} k_{B} M_{\odot}}{2 m_{u} k_{B} R_{\odot}}} \tag{15}\\
& =\sqrt{\frac{3 \mu G M_{\odot}}{2 R_{\odot}}} \tag{16}
\end{align*}
$$

nets $v_{A V}=415.5 \mathrm{~km} / \mathrm{s}$. As $t_{A V}$ can be calculated from velocity using

$$
\begin{align*}
t_{A V} & =\frac{R_{\odot}}{v_{A V}} \tag{17}\\
& =\frac{R_{\odot}}{\sqrt{\frac{3 \mu G M_{\odot}}{2 R_{\odot}}}} \frac{2 R_{\odot}}{2 R_{\odot}} \tag{18}\\
& =\frac{2 R_{\odot}^{2}}{\sqrt{6 \mu G M_{\odot} R_{\odot}}}=\sqrt{\frac{2 R_{\odot}^{3}}{3 \mu G M_{\odot}}} \tag{19}\\
& =\sqrt{\frac{2}{3 \mu}} \sqrt{\frac{R_{\odot}^{3}}{G M_{\odot}}} \tag{20}
\end{align*}
$$

This crosses R_{\odot} in 1675 seconds. Using Kepler's third law to determine the orbital period for a particle at the surface of the sun

$$
\begin{equation*}
t_{o}=2 \pi \sqrt{\frac{R_{\odot}^{3}}{G M_{\odot}}} \tag{21}
\end{equation*}
$$

nets an orbital period of $\sim 10^{4}$ seconds. The ratio of the $t_{A V}$ and t_{0} is calculated as

$$
\begin{equation*}
\phi=\frac{t_{A V}}{t_{0}}=\frac{\sqrt{\frac{2}{3 \mu}} \sqrt{\frac{B_{\odot}}{G M_{\odot}}}}{2 \pi \sqrt{\frac{B_{\odot}^{3}}{G M_{\odot}}}}=\sqrt{\frac{1}{6 \pi^{2} \mu}} \tag{22}
\end{equation*}
$$

which nets a ratio of $\phi \approx 0.1677$.

Exercise 2.7

				1	1		
	$B 2$	$B 8$	$F 0$	$F 5$	65	$M O$	$M J$
m / M_{0}	9.8	3.8	1.6	1.3	0.92	0.51	0.12
B / R_{0}	5.6	3.0	1.5	1.3	0.92	0.60	0.18
L / L_{0}	5800.0	180.0	6.5	3.2	0.79	0.08	0.003

$$
\begin{aligned}
& \rho=\frac{M}{4 / 2 \pi R^{2}} \quad T_{c}=\frac{1}{2}\left\{\frac{6 m}{R} \frac{\mu m_{n}}{k_{s}}\right\} \quad P_{c}=\frac{3}{8 \pi}\left\{\frac{6(m)^{2}}{R^{2}}\right\} \\
& \rho_{0}=\frac{m_{0}}{4 / 3 \pi R_{0}^{3}} \quad T_{C_{0}}=\frac{1}{2}\left\{\frac{6 m_{0}}{R_{0}} \frac{m_{0}}{s_{0}}\right\} \quad P_{0}=\frac{3}{8 T}\left\{\frac{6 m_{0}}{R_{0}}\right\} \\
& \frac{P_{0}}{P_{0}}=\frac{\frac{M}{4 / 3 \pi R^{3}}}{\frac{M_{0}}{4 / 3 \pi R_{0}^{3}}} \frac{\frac{3 M}{4 R^{2}}}{\frac{3 M_{0}}{4 \pi R_{0}^{3}}} \rightarrow \frac{3 M}{4 \pi R^{3}} \cdot \frac{4 \pi R_{0}^{3}}{8 M_{0}}=\frac{M R_{0}^{3}}{R^{3} M_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\rho}{\rho_{\theta}}=\frac{M R_{\theta}^{3}}{R^{3} M_{\theta}}, \frac{T_{c}}{T_{c \theta}}=\frac{M R_{\theta}}{R M_{\theta}} ; \frac{P_{c}}{P_{c o}}=\frac{M^{2} R_{\theta}^{4}}{R^{4} M_{\theta}^{2}}
\end{aligned}
$$

\rightarrow Relationships that are followed by ratios

- See that nave of ratios have a clependence on Luminosity - Next step is to see how different stellar types act

| Luminosity | Density | | Central Temp. | Central Pressure |
| ---: | ---: | ---: | ---: | ---: | Stellar Type | B2 |
| :--- |
| 5800 |

The higher luminosity shows a higher temperature but lower density and pressure. As the luminosity decreases, so does the temperature, while the density and pressure increase.
2.8.) When a prato star contacts:

Pressure rises
Density rises
Temperature rises
radius decreases
energy decreases

$$
\underbrace{T_{c}=\frac{1}{2}\left[\frac{G M}{R} \frac{\mu m_{*}}{K_{B}}\right]}_{(1)} ; \quad \underbrace{P_{c}=\frac{3}{8 \pi}\left[\frac{G M^{2}}{R^{4}}\right]}_{(2)} ;, E=\frac{-\frac{G M^{2}}{R}}{(3)}
$$

$R \downarrow$ - Contracting implies Radius is Decreasing.
T个 - In equation (1), when you divide by a decreasing R., the temperature will rise.
$P \uparrow$. In equation (2), you will get the same result as T, but with Pressure rising.
$\rho \uparrow$ The density will rise because the star is contracting and also not expelling any of its matter.

Ed. Total Energy decreases because the gravitational energy of the star is converted into heat and light which radiates away into space.

Problem 12

Scanned with CamScanner

If additional heat is provided the central temperature would increase for some time but would eventually revert to its equilibrium state.
[NOT CORRECT. Adding energy decreases the temperature. See the figure.]
(1)

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\ldots
$$

near x_{0} :
Note that it is also true that $(1+\mathrm{x})^{\mathrm{a}}$ expands to 1 tax, which is used later on, egg. in Part 4.

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
& =A x_{0}^{a}+A a x_{0}^{a-1}\left(x-x_{0}\right) \\
& =A x_{0}^{a}+A a x_{0}^{a}\left(x-x_{0}\right) / x \\
f(x) & =f_{0}\left(1+a\left(x-x_{0}\right) / x_{0}\right) \\
f\left(x_{0}+\partial x\right) & =f_{0}\left(1+a \delta x / x_{0}\right)
\end{aligned}
$$

(2) from $2.7 \frac{d p}{d r}=\frac{-\rho G m(r)}{r^{2}} \Rightarrow \frac{\Delta r}{\Delta r}=\frac{-\mathcal{\beta} G m(r)}{r^{2}}$
$P(R+\Delta r)=0$ from problem description

$$
\begin{array}{ll}
P(R)=\frac{\rho G M \Delta r}{R^{2}} & \frac{m}{4 \pi R^{2}}=\rho \Delta r \\
P(R)=\frac{G M m}{4 \pi R^{4}} & \\
4 \pi R^{2} P(r)-\frac{G M m}{4 \pi R^{2}}=0 &
\end{array}
$$

(3)

$$
\begin{aligned}
& \rho=\frac{M}{V}=\frac{M}{R^{3}}=M R^{-3} \\
& \rho^{\prime}=\rho\left(1-3 \frac{\delta R}{R}\right)
\end{aligned}
$$

(4)

$$
\begin{array}{ll}
p^{\prime} v^{r r}=\rho V^{r} & V=m / \rho \\
p^{\prime} m^{r \prime} \rho^{-r}=\rho m^{\gamma} \rho^{-\gamma} & m^{\gamma}=m^{\gamma} \\
p^{\prime} \rho^{-r}=p \rho^{-\gamma} & \rho^{\prime}=\rho\left(1-3 \frac{\delta R}{R}\right) \\
p^{\prime}=p\left(\frac{\rho}{\rho^{\prime}}\right)^{-\gamma} &)^{-r} \\
=p\left(\frac{\rho}{\rho(1-3 \delta R / R)}\right. \\
=p(1-3 \delta R / R)^{\gamma}
\end{array}
$$

$$
\approx P(1-3 \gamma \delta R / R)
$$

(5)

$$
\begin{gathered}
4 \pi R^{2} P(R)-\frac{G M m}{R^{2}} \Rightarrow 4 \pi(R+\delta R)^{2} P\left(1-3 \delta \frac{\delta R}{R}\right)-\frac{G M m}{(R+\delta R)^{2}}=F \\
4 \pi R^{2}\left(1+\frac{\delta R}{R}\right)^{2} P\left(1-3 \gamma \frac{\delta R}{R}\right)-\frac{C-M m}{R(1+\delta R / R)}=F \\
4 \pi R^{2}\left(1+2 \frac{\delta R}{R}\right) P\left(1-3 \gamma \frac{\delta R}{R}\right)-\frac{G M m(1-26 R / R)}{R^{2}(1+2 \delta R / R)(1-2 \delta R / R)}=F \\
4 \pi R^{2} P\left(1+(2-3 \gamma) \frac{\delta R}{R}\right)-\frac{G M m}{R^{2}}\left(1-2 \frac{\delta R}{R}\right)=F \\
4 \pi R^{2} P-\frac{G M m}{R^{2}}+4 \pi R^{2} P(2-3 \gamma) \frac{\delta R}{R}+\frac{2 G M m \delta R}{R^{3}}=F \\
\frac{G M m}{R^{2}}(2-3 \gamma) \frac{\delta R}{R}+\frac{2 G M m \delta R}{R^{2}} R=F \\
\frac{G M m \delta R}{R^{3}}(4-3 \gamma)=F
\end{gathered}
$$

(6)

$$
\begin{aligned}
& m \delta \ddot{R}=\frac{G M m \delta R}{R^{3}}(4-3 \gamma)=C \delta R \quad C=\frac{G M(4-3 \gamma)}{R^{3}}=\frac{4 \pi P G(4-3 \gamma)}{3} \\
& \delta R=A e^{i(-C) t} \\
& \sigma^{2}=-C \Rightarrow \frac{2 \pi}{\sqrt{-C}}=T \\
&=\frac{2 \pi \pi}{3}=\frac{M}{R} \\
&=\sqrt{-4 \pi \rho G(4-3 \gamma)} \\
& \text { if } \frac{3 \pi}{\rho G(4-3 \gamma)} \\
& \gamma=\frac{5}{3}, T=\sqrt{\frac{\rho \pi}{\rho G}}
\end{aligned}
$$

