An introduction to Stellar Nuclear Power

Zach Meisel

Ohio University - ASTRI000

The atomic nucleus

- A collection of protons and neutrons, weighing $\sim 10^{-27} \mathrm{~kg}$ and roughly $10^{-15} \mathrm{~m}$ in size
- Nuclei come in lots of different combinations of protons and neutrons, where each combination is called an "isotope"
- Each isotope can have several different configurations, known as states, each one corresponding to a certain amount of binding energy
- the "ground state"
- and "excited states"

Nuclear binding energy

- Nuclei exist because of binding energy: the mass of the nucleus is less than the sum of the mass of the nucleons in the nucleus (the "mass defect")
- This is mass-energy equivalence in action: $E=m c^{2}$

- Looking at the ground state energies, there are trends in nuclear binding across the nuclear landscape
- Converting from one or more isotopes to another one or more isotopes can release the excess binding energy
- Fusion = light-to-heavy nuclei
- Fission = heavy-to-light

Fusion vs Fission

Fusion

Fission

Hill \& Wheeler, Phys. Rev. 1953

Fusion in stars

- The high temperatures in stars gives nuclei the kinetic energy needed to overcome the Coulomb repulsion between charged particles
- The reaction rate at the energies of interest are rather small
- Good! Stars live a long time
- Bad! Hard to measure

Fusion in the sun

PP chains

percentages are for solar temperature

(cold) CNO cycles

Fusion in the sun: direct evidence from neutrinos

~280,000 kg of liquid scintillator surrounded by ~2200 PMTs
detect ν via
scattering with e-

