An introduction to Galaxy Evolution

Zach Meisel Ohio University - ASTR1000

First, how do we know how a galaxy evolves over time?

- Galaxy evolution is way too slow for sitting & watching to be useful (even with the time travel face bag)
- Instead, we take advantage of light travel time and look further away to look further back in time
 - ...sort of like archaeology
- The challenge is to get enough examples over time to piece together the likely steps (and cross check with simulations)
- The further back you look, the more rough of a guide you have.
 For furthest galaxies, just shape & color
- The census of galaxies at various distances/times gives clues too
- Individual stars can be used for galactic ages
- Have to account for bias!
 Brighter galaxies are easier to detect.

Ellipticals: top-down and bottom-up formation

• **Observation:** The early universe hosts quasars, supermassive black holes feeding on galactic gas to make jets that outshine the rest of the galaxy

Inference: Large galaxies were formed early in the universe, top-down.

- Why no disk? Because little net angular momentum
- Observation: Giant elliptical galaxies are not seen earlier than ~6Gyr into the universe's lifetime Inference: Large elliptical galaxies were formed bottom-up by mergers
 - Why no disk? Because there isn't the gas from the original cloud to cause collisions that ultimately flatten a rotating orb into a disk. So stars orbit in lots of orientations.
- Both appear to be true

NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M.Clampin (STScl), G. Hartig (STScl), the ACS Science Team, and ESA

Spirals: mostly bottom-up formation

- Observation: Spirals host old stars in the bulge and younger stars in the disk
 Inference: The bulge initially formed top-down, then most of the disk formed later
- Observation: Chemically distinct stars are found in streams of the Milky Way.
 Inference: Spiral galaxies grow by mergers with smaller galaxies

Phase I:

Primordial hydrogen cloud.

Phase 2:

Disk galaxy and companion.

Rapid Collapse

Cloud collapses under gravity.

Large bulge of ancient stars dominates galaxy.

Environmental Effects

Smaller galaxy falls into disk galaxy.

Bulge inflates with addition of young stars and gas.

Galaxy cluster formation

Similar to galaxy formation, local perturbations in density cause overdense regions to collapse. Lots of these result in a filament structure.

The cosmic web, observed:

You'll never guess how galaxy clusters form...

- It's the same story as for essentially everything else: local density differences
- + gravity
- + time

