An introduction to Galaxies and Dark Matter

Zach Meisel Ohio University - ASTR1000

Dark Matter

- Matter = stuff with mass (i.e. interacts gravitationally)
 - Dark Matter seems to account for ~85% of all matter & ~25% of the energy+matter in the universe
- Dark = stuff that does not absorb, reflect, or emit light
 - Thought to be some kind of new particle

Dark Matter Evidence: Galaxy rotation curves

- For a small object orbiting a massive object, Kepler's laws of planetary motion apply
- The third law states that the period of the orbit squared is proportional to the semi-major axis (the radius, for a circle) cubed: $T^2 \propto a^3$
- For a circular orbit, a = R, and the circumference of the circle is $2\pi R$, which is covered in a period T, which amounts to a velocity $v = \frac{2\pi R}{\tau}$
- Using the 3rd law, $T \propto R^{3/2}$, so $v \propto \frac{R}{R^{3/2}} = \frac{1}{\sqrt{R}}$
- However, galaxies show v is often not even decreasing for larger radii, implying an extended matter distribution

Modern data (Wolfram Alpha Knowledgebase 2018)

	Planet	Semi-major axis (AU)	Period (days)	$rac{R^3}{T^2}$ (10 ⁻⁶ AU ³ /day ²)
	Mercury	0.38710	87.9693	7.496
	Venus	0.72333	224.7008	7.496
	Earth	1	365.2564	7.496
	Mars	1.52366	686.9796	7.495
	Jupiter	5.20336	4332.8201	7.504
	Saturn	9.53707	10775.599	7.498
	Uranus	19.1913	30687.153	7.506
	Neptune	30.0690	60190.03	7.504

Dark Matter Evidence: Galaxy rotation curves

Gravitational lensing

- Light travels to us through spacetime, which can be warped by massive objects
- The amount that light is bent depends on the mass of the object
- The bending of light can cause what looks like multiple copies of a background galaxy, warped into arcs, or a single ring, depending on alignment

ALMA (NRAO/ESO/NAOJ)/Luis Calçada (ESO)

Gravitational lensing

The lens is also a magnifying glass, enabling distant objects to be seen that would otherwise be too dim

Dark Matter Evidence: Gravitational lensing

In the Bullet Cluster, colliding galaxy clusters have distinct visible matter and dark matter distributions

NASA/CXC/M.Weiss

What is dark matter?

- The bottom line is that I don't know and neither does anyone else (at the moment)
- But, we can say the following:
 - It's probably not just black holes: Massive astrophysical compact halo objects (MACHOs) are unlikely because the Big Bang didn't make enough regular matter and we just don't see enough of these
 - It's probably not neutrinos: Neutrinos are extremely light & weakly interacting particles that are frequently produced in radioactive decay. They are very fast-moving and would thus cause large-scale features (superclusters) to be made first ... but we don't see that
 - It's probably not a problem with the theory of gravity: None of these theories explain all of the observables we need dark matter for
 - Cold dark matter is a favorite: This would be a new particle. Many researchers are attempting to detect this, based on assumptions about their favorite dark matter candidate.

