An introduction to Math Fundamentals

Zach Meisel
Ohio University - ASTRI000

Algebra: "solving for x "

- Example I:
- $y=a^{*} x$
- We can move a variable that is in the numerator (top part of the fraction) on one side of the equation to the denominator on the other side of the equation.
- So " $y=a^{*} x$ " becomes " $y / a=x$ ".
- Example 2:
- $y=a / x$
- This becomes, $y^{*} x=a$
- Which becomes $x=a / y$
- Example 3:
- $y=a^{*} x^{2}$
- First we can apply the same manipulation as above, so our equation becomes: $y / a=x^{2}$
- Now we need to "undo" the exponent, which is done by taking a "root". When the exponent is 2 , we use a square root: $\mathrm{x}=\sqrt{y / a}$

Working with exponents

- The meaning of positive and negative exponents:
- A positive exponent means that number is multiplied by itself some number of times, where the number of times is the exponent:
- Example I: $x^{2}=x^{*} x$

A factor of 10 is an "order of

- Example $2: 10^{2}=10 * 10=100$
magnitude". So 100 is two orders
of magnitude larger than 1.
- A negative exponent is almost the same thing, but the numbers are actually in the denominator.
- Example I: $x^{-2}=1 /\left(x^{*} x\right)$
- Example 2: $10^{-1}=1 /\left(10^{*} 10\right)=1 / 100=0.01$
- When multiplying numbers, add exponents:
- Example I: $10^{\mathrm{a} *} 10^{\mathrm{b}}=10^{\mathrm{a}+\mathrm{b}}$
- Example 2: $\left(2 \times 10^{2}\right)^{*}\left(3 \times 10^{-1}\right)=(2 * 3) \times 10^{(2-1)}=6 \times 10^{1}=6^{*} 10=60$
- When dividing numbers, subtract exponents:
- Example I: $10^{\mathrm{a}} / 10^{\mathrm{b}}=10^{\mathrm{a}-\mathrm{b}}$
- Example 2: $\left(2 \times 10^{2}\right) /\left(3 \times 10^{-1}\right)=(2 / 3) \times 10^{(2-(-1))}=0.667 \times 10^{3}=0.667 * 10^{*} 10^{*} 10=667$

Units as a tool to check your answer

- Making sure that you have the right unit is one way to check that you got the algebra right (though it is of course no guarantee!).
- Example:A car takes 2 hours to travel 60 miles. How fast was its average speed?
- Speed = (Distance Traveled)/(Elapsed Time)
- Speed $=(60$ mile $) /(2$ hour $)$
- Speed $=(60 / 2) *($ mile/hour $)$
- Speed = 30 mile/hour = 30 miles per hour ...which is the unit you know \& love, and is also a reasonable speed for a car to travel (if a bit slow).
- If you had accidentally used Speed = (Distance Traveled)*(Elapsed Time), you would get 120 mile*hour.
- This is a bit fast for a car, but not necessarily unreasonable. However, mile*hour is not a proper unit for speed, so you know a mistake happened.

