An introduction to **Astronomy**

Zach Meisel Ohio University - ASTR1000

What is astronomy?

"The cosmos is all that is, or ever was, or ever will be." - Carl Sagan

- Astronomy is:
 - the study of everything outside the extent of the Earth ...but also including Earth in terms of it's properties as a planet.
 - an observational science (for the most part).
 We can't conduct astronomical experiments, though experiments in astrophysics (computational, nuclear, chemical) can be performed.
 - an evolving field. The major items we cover in this course are unlikely to change (probably!), but details may be not be solidified.

Units and Scales

- Vast difference in time and spatial scales, so need scientific notation
 - More compact way of writing very large or small numbers, placing significant digits out front and moving zeroes to an exponent
 - The exponent indicates how many positions the decimal place needs to shift, where negative means shift to the left.
 - Large number example: 310,000,000 = 3.1×10⁸
 - Small number example: 0.0000000013 = 1.3×10⁻¹⁰
 - See textbook Appendix C
- Commonly used system of units is the international system (SI), though many special units also exist
 - Distance = meters (m), time = seconds (s), mass = kilogram (kg)
 - Common SI prefixes: ----->
 - See textbook Appendix D
 - Common special units:
 - Astronomical Unit (AU) = earth-to-sun distance= 1.496x10¹¹ m
 - Lightyear (ly) = distance light travels (at 2.998×10^8 m/s) in a year = 9.46×10^{15} m
 - Parsec (pc) = 3.26 light years

giga (G): 109centi (c): 10-2mega (M): 106milli (m): 10-3kilo (k): 103micro (μ): 10-6nano (n): 10-9femto (fm): 10-15

The Universe in a Nutshell: Major components

- Moons, like the Moon, are (relatively) cold rocks and/or oceans that orbit a host planet, which are hundreds to thousands of kilometers in diameter
- Planets, like the Earth, are (relatively) cold rocks and/or fluid clouds that are large enough to be spherical and to clear their orbital path around a host star, which are thousands to tens of thousands of kilometers in diameter
- Stars, like the sun, are hot balls of gas, most of which are powered by nuclear fusion and tend to be light-seconds in diameter
- Galaxies, like the Milky Way, are collections of 100's of billions of stars bathed gas clouds, most of which was are thousands of light years in diameters
- Galaxy clusters are collections of galaxies into large scale structures. Superclusters are clusters of clusters

Vastness of space

- Space is big ... really, really big
- "Lightspeed" may sound fast, but "fast" is relative to the distance that will be covered
- It takes _____ for light to travel _
 - 8 min from Earth to the Sun
 - 4.25 yr to the nearest star
 - 100 kyr across the Milky Way
 - 2.5 Myr to the nearest Galaxy
 - 13.8 Gyr across the visible universe
- When two galaxies collide, the respective stars will not collide (though the gas in between will)
- Space is mostly nothing (<I atom/m³ in intergalactic space) So, astronomy is the study of everything and nothing. very Zen.

Looking far away means looking back in time!

Connecting very small and very large scales

- Stars are powered by the fusion between atomic nuclei (~10⁻¹⁵ m)
 - Nuclear reactions produce energy and transmute elements

• Interstellar chemistry leaves an imprint on astronomical data and gives insight into the conditions of astronomical environments

The Universe in a Nutshell: Big-picture Evolution

How do we know what we know?

- Mostly from light collected by telescopes
 - Spectra: amount of light versus wavelength
 - Light curve: amount of light versus time

• Telescope types span the electromagnetic spectrum, often requiring a satellite

• Exceptions: neutrinos, gravitational waves, meteorites, rocks collected in space

