An introduction to the Terrestrial Planets

Zach Meisel

Ohio University - ASTRI000

the Terrestrial Planets

Mercury ఫ̣

- 88-day, relatively eccentric orbit
- I.5 mercury days per mercury year
- $\sim 0.06 M_{\oplus}$

Because it is small

- geologic activity ceased a long time ago
- there is no significant atmosphere
- both of the above lend themselves to a highly cratered surface
- The interior cooled after the surface had hardened, creating wrinkles that stretch far across the planet's surface

NASA/Mariner 10

June $29 \underbrace{\text { June } 24}$ June 19

Venus
 q

- 225-day orbit, while a Venusian day is 244 earth-days, rotating in the opposite direction of other terrestrial planets
- Extreme atmosphere, mostly made of CO_{2}
- Pressure: 92 atm
- Temperature: ~870 F
- Clouds of sulfuric acid
- Nearly isothermal across the planet!
- Significant volcanic activity

Earth \oplus

THE Moon ©

- $0.01 \mathrm{M}_{\oplus} 0.27 \mathrm{R}_{\oplus}$ (heavily cratered) ball of rock orbiting the Earth at a distance of 0.003 AU and speed of $\sim 1 \mathrm{~km} / \mathrm{s}$
- Roughly 60% the density of Earth, because it is mostly rock, and is the $2^{\text {nd }}$ most dense moon in the solar system
- Tidally locked, so I rotation per I orbit
- Craters are the result of lots of impacts from space rocks
- Stuff flung from the craters creates "crater rays"

Mars

- I. 8 earth year orbit $\sim 1.5 \mathrm{AU}$ from the sun, with a 24.6 hr day
- Surface is covered in iron-oxide dust, which gives it the red tinge
- Very thin atmosphere (0.006 atm) of mostly CO_{2}, with a lot of dust, visibly changing the appearance
- Has Marsquakes (the moon has moonquakes too): seismic activity like on Earth, which can ultimately be used to learn more about the interior structure (as for Earth and the Moon)
- Two moons, thought to be captured asteroids

the Asteroid Belt

- $\sim 10^{21} \mathrm{~kg}$ of mass dispersed amongst millions of rocks of $\sim 1 \mathrm{~km}$ or larger (and many more smaller ones), ~ 4 of which are most of the mass
- Objects within the belt are widely spaced ($\sim 10^{12} \mathrm{~km}^{3}$ per asteroid), though have distinct clusters

