An introduction to the Terrestrial Planets

Zach Meisel Ohio University - ASTR1000

the Terrestrial Planets

...and friends

gory H. Revera

esa/mps/upd

Mercury **X**

- 88-day, relatively eccentric orbit
- 1.5 mercury days per mercury year
- ~0.06 M_⊕
 - Because it is small
 - geologic activity ceased a long time ago
 - there is no significant atmosphere
 - both of the above lend themselves to a highly cratered surface
- The interior cooled after the surface had hardened, creating wrinkles that stretch far across the planet's surface

Venus \bigcirc

- 225-day orbit, while a Venusian day is 244 earth-days, rotating in the opposite direction of other terrestrial planets
- Extreme atmosphere, mostly made of CO₂
 - Pressure: 92 atm
 - Temperature: ~870 F
 - Clouds of sulfuric acid
 - Nearly isothermal across the planet!
- Significant volcanic activity

NASA/IPI

Earth \oplus

- 6x10²⁴ kg & 6370 km radius (slightly lumpy) ball of rock orbiting the sun at a distance of 1.5x10⁸ km and speed of ~30 km/s
- The most dense planet in our solar system
- Large metallic core, encased in a thick layer of dense rock, which is encased in a thin layer of less-dense rock, which is coated in a thin layer of water and air
- Substantial internal heat left from initial cooling and as much or more from radioactive decay

THE Moon (

- 0.01 $M_\oplus\,$ 0.27 R_\oplus (heavily cratered) ball of rock orbiting the Earth at a distance of 0.003 AU and speed of ~1 km/s
- Roughly 60% the density of Earth, because it is mostly rock, and is the 2nd most dense moon in the solar system
- Tidally locked, so I rotation per I orbit
- Craters are the result of lots of impacts from space rocks
- Stuff flung from the craters creates "crater rays"

Mars 3

- I.8 earth year orbit ~I.5 AU from the sun, with a 24.6 hr day
- Surface is covered in iron-oxide dust, which gives it the red tinge
- Very thin atmosphere (0.006 atm) of mostly CO₂, with a lot of dust, visibly changing the appearance
- Has Marsquakes (the moon has moonquakes too): seismic activity like on Earth, which can ultimately be used to learn more about the interior structure (as for Earth and the Moon)
- Two moons, thought to be captured asteroids

the Asteroid Belt

- ~10²¹ kg of mass dispersed amongst millions of rocks of ~1km or larger (and many more smaller ones), \sim 4 of which are most of the mass
- Objects within the belt are widely spaced \bullet (~10¹² km³ per asteroid), though have distinct clusters

~940 km Euphrosyne lustin Cowart Interamnia Herculina Eunomia ~530 km NASA/IP Asteroid Main-Belt Distribution Kirkwood Gaps Mean Motion Resonance (Asteroid: lupiter) 250 50

Ceres Vesta

Pallas Hygiea

Davida

Juno Psyche

Europa other

Asteroids

of

3.2 3.3 3.4 3.5 Semi-major Axis (AU)

