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Stellar Evolution F|OW Chart (can be compl:cated by binary evolutlon')
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White Dwarf: the low-mass stellar remnant

* An earth-sized object (R~6x10% m) around the mass of the sun
e Matter is “degenerate”
 the pressure generated from packing electrons so close is
what repels gravity
e Degeneracy leads to an interesting mass-radius relationship:
adding mass would shrink the star!

e QOver time, the
white dwarf

0.04

ol ; continues to cool,
3 oos % becoming dimmer
% § & redder on the
gm E HR-diagram
2 o

— e Cooling is delayed
: * at the point of
0 025 05 0.75 I 125 MChl"5 1.75 2 Crysta”ization

Mass (solar masses)

Gaia G absolute magnitude

10

11f

12}

13

141

15

16}

17—

E lSlali Age 1;1Y0'us i.3é3‘5|68.054,” o
[ Star Mass in Solar Mass: 0.589

= =
(%] 4

v

Luminosity [L:]
=

S

O

=3

10° 10°
Temperature [K]

6?6_‘. White dwarf cooling sequence (model)
~05 0.0 0.5 10 15
<—— bluer Gaia BP-RP colour redder ——>



White dwarfs in binaries: Novae

Recurrent explosions synthesize up to *°Ca (and beyond?) with a potentially rich set of observables
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White dwarfs in binaries: Thermonuclear Supernovae (a.k.a.Type-la)

Single or double degenerate (or both)  scenarios give similar results
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Neutron Star: a high-mass stellar remnant

atmosphere —
~1lcm

* A city-sized object (R~10km wide)

ocean
around the mass of the sun [N )

~100m g
outer crust—.
\

uclei accessible]

in the lab ~0.5km

e They are not a “ball of neutrons”!
The structure is much more interesting.

e Because of the compactness, [Exotic/theoreticaﬂ {”38@, crust

the surface gravity is extreme. matter states
(~10''x on Earth’s surface)

core
~10km

* The gradient in the force is also extreme
e Consider the force of gravity on your head, which we’ll say weighs 5kg

(6 6710111 )(2x103°k )(5kg)

o [ — ~
head R2 (1x10% m)2

~ 6.670 X 104 N

* Now consider the force on your lower 5kg,
which is ~Im lower (R—(R-Im)): Frper = 6.671 X 1012 N

* The force difference Fjpqq — Freer = 10°N A human tendon has a
tensile strength of ~10> N
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u I Sa rS ' Magnetic  star c /
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* Neutron stars are often rotating at high and radiaion R GEGEn
rates and with high magnetic fields, which - - \
results in a jet of radiation - R soun

pole pole

* When the jet is pointed towards earth, we
see a signal with a repeating pulse

* These can be used as very accurate clocks

Correlations between arrival time changes for an
“array” of pulsars would occur for gravitational waves

0.7

“Shapiro delay” of a pulsar signal due to gravitational time
dilation provides the most accurate mass for neutron stars
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Neutron stars in binaries: X-ray bursts

Recurrent explosions that release as much energy in 100s as the sun does in an entire day
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e X-ray burst light curves can teach us about how matter behaves at extreme density
e Matter does not escape:
—11 m> 30 —-27
cMm (6 67%10 )(leo kg)(1.66x10727kg)

. L TR ~ ~11
Gravitational binding: U - (IX10% ) ~ 3 X107

 Nuclear reactions release ~ 2 X 10713 ] ...so not enough energy to power escape
* These objects do not contribute to elemental abundances in the universe




Neutron stars in binaries...with other neutron stars

e Two massive stars in a binary pair will wind up as neutron stars, which can eventually merge

 This results in gravitational wave and electromagnetic signals and synthesizes a large fraction
of elements heavier than iron in the “rapid” neutron-capture (r-)process
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Black Holes

e The most compact objects in the universe are * :ﬂﬁ,‘;}:iﬂ:(‘m std. error | up./low. limit Qu(:u Virgo
black holes, of which the stellar mass variety are 60 .
created in massive star death 40 J{ . : /Q

30 |
* The escape velocity of these objects is larger 20 I

than the speed of light

e The size can be defined by the Schwarzschild
radius, which is the radius at which the escape
velocity is equal to the speed of light

solar masses
oo

M
e R, = 2 95— km 2 The Black Hole Mass Gap
Mo . 3
. . . 2
* There is a conspicuous gap between the highest- J{
mass neutron stars we know of and the lowest- Heee N ||

mass black holes.This is known as the
black hole mass gap



Black holes in binaries: accreting black holes

e Since black holes do not give off light, we see
them from the absence of light in a region

e This is easiest when the black hole is accreting
material from a companion star.

* In that case, there is also the benefit of the
impact on the orbit of the black hole on the
companion star, which results in the black hole
mass

CXC¥S.Lee

e The X-ray signature from the accretion disk
can tell us the black hole spin



Black holes in binaries...with other black holes

e Two massive stars in a binary pair will wind up as black holes, which can eventually merge

e This results in gravitational wave signals ...but nothing else escapes
e Thisis a new probe into general relativity
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