An introduction to High Mass Stellar Evolution

Zach Meisel

Ohio University - ASTRI000

Carbon burning and beyond

- For stars that start at $\sim 10 M_{\odot}$ or greater, fusion can proceed far beyond carbon

- C burns to make O, Ne, and Mg
- O, Ne, and Mg burn to make elements around Si and S
- Elements around Si and S burn to make elements around Fe, stopping there (see Introduction to Stellar Nuclear Power)
- The result is the famous "onion structure"
- This makes a large fraction of elements lighter than iron

Advanced Burning on the HR Diagram

- As we saw in Introduction to Low Mass Stellar Evolution, this shell burning will cause the luminosity and radius to increase, producing a "supergiant"
- The timescale for advanced burning stages are relatively short:

Core Fuel	Time, $\mathbf{I 5 M}_{\odot}$	Time, $\mathbf{2 5 M}_{\odot}$
H	II Myr	7 Myr
He	2 Myr	0.8 Myr
C	2 kyr	0.5 kyr
O	2 yr	0.5 yr
Si	20 days	I day

How do we know a star is about to go supernova?

- We don't! The star's structure adjusts too slowly to change the surface properties.
- It may be possible to see a unique neutrino signature in the final hours before collapse

Core Collapse Supernova

- Once the inert iron core reaches the Chandrasekhar Mass ($\sim 1.5 \mathrm{M}_{\odot}$), the core collapses in a free-fall
- Eventually, the material in the core can compress no further and the core bounces, driving a shockwave outward
- A neutron star or black hole is left behind

H. Janka et al. Phys. Rep. 2007

Nucleosynthesis in the Supernova Shock

- The outgoing shock following core-bounce raises the temperature \& density, where nuclides are mostly made during a freeze-out from equilibrium
- Some radioactive nuclides (e.g. ${ }^{44} \mathrm{Ti}$) are core collapse supernova diagnostics
B. Grefenstette et al. Nature 2014

The origins of p-nuclei, in the wake of the CCSN shock

 At slightly larger radii, the γ-process in the O / Ne shell is thought to form (most of) the p-nuclei, p-process
isotopes s process decay chains

```
where seed nuclei are destroyed in a massive chain of \((\gamma, n),(\gamma, \alpha)\), and \((\gamma, p)\) reactions: Rapp et al. ApJ 2006为
```


Neutron-rich v-Driven Wind Nucleosynthesis

For $Y_{e}<0.5,(\alpha, n)$ reactions drive the flow of nucleosynthesis from seed elements, creating elements from zinc to tin

Core collapse supernovae make a lot of stuff?

Remnants

- The core collapse supernova will leave behind a compact object
- Lower-mass stars likely produce neutron star, while higher mass stars likely produce a black hole (the star may skip the explosion and go straight to black hole and explosions of very massive stars leave no remnant from pair instability supernovae)
- However, the mapping between initial star properties and final remnant isn't straight forward and is an active area of research

Supernova 1987A, the celebrity of Core Collapse supernovae

Photometry for SN1987A

Neutrino signature $\mathbf{\sim} \mathbf{2 h r}$ before optical detection

Various evidence for a neutron star remnant

