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Rolfs & Rodney, Cauldrons in the Cosmos (1988)

Non-resonant reactions
•Before we discuss resonant reactions,
let’s first consider a non-resonant reaction

•The non-resonant reaction is the process we
discussed two lectures ago when we considered
low-energy collisions with and without
Coulomb effects included

•An example is the direct capture reaction shown
in the figure on the right
•The interaction of the plane-wave of the projectile
with the potential of the target results in a
standing-wave in the compound nucleus that
is characterized by angular momentum 𝑙𝑙

•The transition between the initial and final states is 
accomplished directly via photon emission, so the matrix 
element connecting these states is the electromagnetic operator 
𝜎𝜎𝐴𝐴 𝑎𝑎,𝛾𝛾 𝐵𝐵 ∝ < 𝐵𝐵 𝐻𝐻𝛾𝛾 𝐴𝐴 + 𝑥𝑥 > 2

, where
semi-classical estimates can be obtained as we did previously 2



Resonant reaction
• Now, like the good capitalists we are,

we’re going to add a middle-man
• If it so happens that the sum of the mass excesses of

our reactants and their center-of-mass energy lines-up 
with an excited state in the reactant’s compound nucleus  
{(AcompoundZcompound = Atarget+Aprojectile(Zproduct+Zprojectile)},
then capture can proceed into that state

• The excited state of the compound nucleus then decays in 
a second step, e.g. via γ-emission in the figure on the right

• This process requires 𝐸𝐸𝑐𝑐𝑐𝑐 = 𝐸𝐸𝐵𝐵∗ − 𝑄𝑄𝐴𝐴+𝑥𝑥→𝐵𝐵+𝑦𝑦
• In the more standard notation, 𝐸𝐸𝑅𝑅 = 𝐸𝐸𝑟𝑟 − 𝑄𝑄
• This energy is referred to as the resonance energy

• This process, as we’ll see, causes a strong enhancement in 
the cross section near the center-of-mass energy that 
fulfills the condition above

3
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Why a resonance?
• For a resonant reaction,

the basic phenomenon is that the incoming plane wave is scattering on a potential well
• You could solve for the wavefunction consistently inside and outside the well,

applying appropriate matching conditions for the function and its derivative,
and you would find that there are characteristic wavenumbers for which an integer number of 
wavelengths occur for the part of the wavefunction inside the well

• For those cases you would see the ratio of the amplitude of the wavefunction outside of the 
well to inside of the well is maximized

• You could see this, but you’ll have to go to Iliadis’s book, Nuclear Physics of Stars, to see that
• Instead, recall our result from last lecture for the scattering wavefunction:

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 = 𝜎𝜎𝑒𝑒𝑡𝑡𝑎𝑎𝑒𝑒𝑡𝑡𝑒𝑒𝑐𝑐 + 𝜎𝜎𝑟𝑟𝑒𝑒𝑎𝑎𝑐𝑐𝑡𝑡𝑒𝑒𝑡𝑡𝑟𝑟 = ∑𝑡𝑡=0∞ 2𝜋𝜋 λ
2𝜋𝜋

2
(2𝑙𝑙 + 1) 1 − Real(η𝑡𝑡(𝐸𝐸))

• Since η𝑡𝑡 < 1, we can see the total cross section will have a maximum when Real(η𝑡𝑡) = −1
• This corresponds to the scenario where 𝛿𝛿𝑡𝑡(𝐸𝐸) = 𝜋𝜋

2
, where η𝑡𝑡 = 𝑒𝑒2𝑒𝑒𝛿𝛿𝑙𝑙(𝐸𝐸)
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Why a resonance?
• To get the energy dependence, we need to expand 𝛿𝛿𝑡𝑡(𝐸𝐸 = 𝐸𝐸𝑅𝑅) = 𝜋𝜋

2
in terms of energy

• Ultimately we’re concerned with the scattering cross section, which you’ll recall goes as 
𝜎𝜎𝑒𝑒𝑐𝑐 = ∑𝑡𝑡=0∞ 4𝜋𝜋 λ

2𝜋𝜋

2
(2𝑙𝑙 + 1)sin2(𝛿𝛿𝑡𝑡(𝐸𝐸))

• Someone far more clever than me (Kenneth Krane, or whoever he copied for his book), realized that the best 
approach is to expand cot(𝛿𝛿𝑡𝑡(𝐸𝐸)) about so that you get something that converges

• Scientists tell us that this expansion looks like
cot 𝛿𝛿𝑡𝑡 𝐸𝐸 = cot 𝛿𝛿𝑡𝑡 𝐸𝐸𝑅𝑅 + 𝐸𝐸 − 𝐸𝐸𝑅𝑅

𝜕𝜕 cot 𝛿𝛿𝑙𝑙(𝐸𝐸)
𝜕𝜕𝐸𝐸

|𝐸𝐸=𝐸𝐸𝑅𝑅 + 1
2

(𝐸𝐸 − 𝐸𝐸𝑅𝑅)2 𝜕𝜕2 cot 𝛿𝛿𝑙𝑙(𝐸𝐸)
𝜕𝜕2𝐸𝐸

|𝐸𝐸=𝐸𝐸𝑅𝑅 + ⋯

• If you listen to Krane, or spend too much time on Wolfram Alpha verifying his claims,
you will see that 𝜕𝜕 cot 𝛿𝛿𝑙𝑙(𝐸𝐸)

𝜕𝜕𝐸𝐸
|𝐸𝐸𝑅𝑅 = 𝜕𝜕𝛿𝛿𝑙𝑙(𝐸𝐸)

𝜕𝜕𝐸𝐸
|𝐸𝐸𝑅𝑅

−1
sin2(𝛿𝛿𝑙𝑙 𝐸𝐸𝑅𝑅 )

• Since 𝛿𝛿𝑡𝑡 𝐸𝐸𝑅𝑅 = 𝜋𝜋
2

, sin2 𝛿𝛿𝑡𝑡(𝐸𝐸𝑅𝑅) = 1

• As such, 𝜕𝜕 cot 𝛿𝛿𝑙𝑙(𝐸𝐸)
𝜕𝜕𝐸𝐸

≈ − 𝜕𝜕𝛿𝛿𝑙𝑙(𝐸𝐸)
𝜕𝜕𝐸𝐸

• It turns out, in taking the derivative of −1
sin2(𝛿𝛿𝑙𝑙 𝐸𝐸 )

and evaluating the result at 𝐸𝐸𝑅𝑅,
the second-order term will go to zero
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Why a resonance?
•But wait, there’s more! Noting that cot 𝛿𝛿𝑡𝑡 𝐸𝐸𝑅𝑅 = 0, our hard-won effort for the expansion is 
cot 𝛿𝛿𝑡𝑡 𝐸𝐸 = − 𝐸𝐸 − 𝐸𝐸𝑅𝑅

𝜕𝜕𝛿𝛿𝑙𝑙(𝐸𝐸)
𝜕𝜕𝐸𝐸

|𝐸𝐸=𝐸𝐸𝑅𝑅

•For reasons that will become clear in a minute, we define the width Γ ≡ 2 𝜕𝜕𝛿𝛿𝑙𝑙 𝐸𝐸
𝜕𝜕𝑒𝑒

−1
|𝐸𝐸=𝐸𝐸𝑅𝑅

which is just some number that scales how rapidly the cross section falls-off near the resonance

•So, cot 𝛿𝛿𝑡𝑡 𝐸𝐸 = − 𝐸𝐸−𝐸𝐸𝑅𝑅
Γ/2

•The trigonometry wizards among us can show that,
therefore, sin 𝛿𝛿𝑡𝑡 𝐸𝐸 = Γ/2

(𝐸𝐸−𝐸𝐸𝑅𝑅)2+Γ2/4

•At long last, we finally have something we can use!
Returning to the scattering cross section,
and considering a single angular momentum transfer

𝜎𝜎𝑒𝑒𝑐𝑐,𝑡𝑡(𝐸𝐸) = 𝜋𝜋 λ
2𝜋𝜋

2
(2𝑙𝑙 + 1) Γ2

(𝐸𝐸−𝐸𝐸𝑅𝑅)2+Γ2/4

•This is the Lorentzian distribution,
which you’ve probably seen for resonances, e.g., in the damped harmonic oscillator 6
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Breit-Wigner formula
• When we found the cross section for scattering a plane wave of a given λ transferring some 𝑙𝑙, 
𝜎𝜎𝑒𝑒𝑐𝑐,𝑡𝑡(𝐸𝐸) = 𝜋𝜋 λ

2𝜋𝜋

2
(2𝑙𝑙 + 1) Γ2

(𝐸𝐸−𝐸𝐸𝑅𝑅)2+Γ2/4
, we were a bit hasty and left out necessary details

• Namely, we ignored the fact that the projectile entering the reaction is not necessarily the 
same particle as the ejectile leaving the reaction

• Since the width for forming the compound nucleus isn’t the same as decaying from it,
Γ2 in the numerator goes instead, for X(a,b)Y, to Γ𝑎𝑎𝑎𝑎Γ𝑏𝑏𝑏𝑏

• Γ𝑎𝑎𝑎𝑎 is the rate (recall Γ = ℎ/τ) at which a+X forms the compound nucleus,
…which is the same as the rate at which the compound nucleus decays via channel a+X

• Γ𝑏𝑏𝑏𝑏 is the rate at which the compound nucleus decays via channel b+Y
• However, Γ2 in the denominator is a sort of weighting factor that corresponds to the total 

decay rate of the compound nucleus, and therefore Γ = ∑Γ𝑒𝑒
• To make life more complicated, each of these widths are energy dependent, Γ(𝐸𝐸)
• Finally, 2𝑙𝑙 + 1 was valid for a spinless particle, for an excited state with spin 𝐽𝐽 being populated 

by a projectile with spin 𝐽𝐽𝑎𝑎 impinging on a nucleus with ground-state spin 𝐽𝐽𝑎𝑎,
2𝑙𝑙 + 1 becomes the factor 𝑔𝑔 = 2𝐽𝐽+1

(2𝐽𝐽𝑎𝑎+1)(2𝐽𝐽𝑋𝑋+1) 7



• Our ho-hum Lorentzian, now becomes the bright and shiny Breit-Wigner formula,

𝜎𝜎𝐵𝐵𝐵𝐵,𝑎𝑎 𝑎𝑎,𝑏𝑏 𝑏𝑏(𝐸𝐸) = 𝜋𝜋
λ
𝜋𝜋

2 2𝐽𝐽 + 1
(2𝐽𝐽𝑎𝑎 + 1)(2𝐽𝐽𝑎𝑎 + 1)

Γ𝑎𝑎𝑎𝑎(𝐸𝐸)Γ𝑏𝑏𝑏𝑏(𝐸𝐸)
(𝐸𝐸 − 𝐸𝐸𝑅𝑅)2+(Γ(𝐸𝐸))2/4

• Each resonance adds a sharp spike
onto the non-resonant cross section

• This has some major implications:
1. If we just want to make a reaction

happen, it’s best to pick an energy
on a resonance

2. If we don’t want a reaction to
happen (e.g. background), we had
better avoid the resonance energy

3. If we’re considering an environment
with an energy distribution (e.g. a star),
the resonant rate is mostly what matters

4. Since 𝜎𝜎𝐵𝐵𝐵𝐵 has such a strong energy
dependence, we can use it to measure
energy-loss and therefore target thickness

8

Breit-Wigner formula

R.J. deBoer et al. Rev.Mod.Phys. (2017)



Resonance features
•Before we get too fat and sassy and start ignoring the direct
reaction contribution, we need to remember that scattering
directly off of the potential happens too

•This is the nuclear elastic scattering from last time, which fancy
folks like to call potential scattering or shape elastic scattering

•The waves from shape elastic scattering can
interfere with scattering off of the resonance,
producing a neat shape

•When we remove the trivial component of the
cross section (which we’ll cover in a moment),
we can see this in our data

9
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Resonance features

•How can we understand this feature near the resonance?
•Because wave mechanics is in play here,
we can’t just add the outgoing wavefunctions for the different types of scattering

•Instead, we need to combine them as η𝑡𝑡 𝐸𝐸 = 𝑒𝑒2𝑒𝑒 𝛿𝛿𝑙𝑙,𝑟𝑟𝑟𝑟𝑟𝑟 𝐸𝐸 +𝛿𝛿𝑙𝑙,𝑟𝑟𝑠𝑎𝑎𝑠𝑠𝑟𝑟(𝐸𝐸)

•The scattering cross section becomes:

𝜎𝜎𝑒𝑒𝑐𝑐𝑎𝑎𝑡𝑡𝑡𝑡,𝑎𝑎 𝑎𝑎,𝑏𝑏 𝑏𝑏(𝐸𝐸) = 𝜋𝜋 λ
𝜋𝜋

2
𝑔𝑔 𝑒𝑒−2𝑒𝑒𝛿𝛿𝑙𝑙,𝑟𝑟𝑠𝑎𝑎𝑠𝑠𝑟𝑟 − 1 + 𝑒𝑒Γ

(𝐸𝐸−𝐸𝐸𝑅𝑅)+𝑒𝑒Γ/2

2

•The last term inside || becomes negligible for (𝐸𝐸 − 𝐸𝐸𝑅𝑅) ≫ Γ/2, and we just have shape elastic 
scattering

•The last term dominates for 𝐸𝐸 ≈ 𝐸𝐸𝑅𝑅 and we just have the resonance scattering
•We also see that we expect a dip just below 𝐸𝐸 ≈ 𝐸𝐸𝑅𝑅, because the last term is significant, but 
negative

10
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𝐽𝐽𝜋𝜋 considerations
•Resonant reactions are due to the strong interaction, so spin is conserved
•Therefore, for a spin 𝐽𝐽1 particle impinging on a spin 𝐽𝐽2 target, bringing in an orbital angular 
momentum 𝑙𝑙, can only populate excited states for a limited range of spins 𝐽𝐽

•For example, nucleon capture on an even-A nucleus can only populate states with
𝑙𝑙 − 1

2
≤ 𝐽𝐽 ≤ 𝑙𝑙 + 1

2
•Similarly, the parity is constrained by π 𝐽𝐽 = 𝜋𝜋1𝜋𝜋2(−1)𝑡𝑡

•If 𝜋𝜋1 = 𝜋𝜋2 = +1, then π 𝐽𝐽 = (−1)𝑡𝑡,
i.e. the parity of the resonance is determined by the orbital angular momentum of the 
reaction channel

•Such a resonant state is said to have “natural parity”.
•If π 𝐽𝐽 ≠ (−1)𝑡𝑡, then that resonant state has “unnatural parity”

11



Resonance widths
• As we noted, the resonant cross section is mostly described by the probability of forming the 

compound nucleus, represented by Γ𝑎𝑎𝑎𝑎(𝐸𝐸), multiplied by the probability of decaying from the 
compound nucleus by a particular channel, Γ𝑏𝑏𝑏𝑏(𝐸𝐸), weighted by the total probability of 
decaying from the compound nucleus via any channel Γ(𝐸𝐸)

• For charged particles, we can pretty easily imagine Γ𝑎𝑎𝑎𝑎(𝐸𝐸) is related to the tunneling 
probability, which we figured-out when we went over α decay

•Recall, 𝑃𝑃𝑡𝑡𝑡𝑡𝑟𝑟𝑟𝑟𝑒𝑒𝑡𝑡 𝐸𝐸 = 𝑒𝑒−2𝜋𝜋η𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑆𝑆𝑟𝑟𝑙𝑙𝑆𝑆 = 𝑒𝑒−2𝜋𝜋 𝑍𝑍1𝑍𝑍2𝑒𝑒2/ℏ𝑣𝑣 = 𝑒𝑒−2𝜋𝜋(𝑍𝑍1𝑍𝑍2𝛼𝛼𝑐𝑐/𝑣𝑣)

•But, there’s also a centrifugal barrier, so𝑃𝑃𝑡𝑡 𝐸𝐸 = 𝑒𝑒−2𝑡𝑡(𝑡𝑡+1) ⁄ℏ2 (2𝜇𝜇𝑍𝑍1𝑍𝑍2𝑒𝑒2𝑅𝑅)𝑒𝑒−2𝜋𝜋η

•Since nuclear excited states don’t necessarily correspond to a pure shell-model state that would 
be populated by the angular momentum transfer 𝑙𝑙, we need to take into account that 
probability as well

•Finally, Γ𝑎𝑎𝑎𝑎(𝐸𝐸) = 2𝑃𝑃𝑡𝑡,𝑎𝑎𝑎𝑎 𝐸𝐸𝑅𝑅 𝛾𝛾𝑡𝑡2, where the last term describes the aforementioned overlap
•For photons, the decay probability scales as the 𝛾𝛾-decay rate we have discussed in the past,
Γ𝛾𝛾 𝐸𝐸 = 𝐵𝐵𝑡𝑡𝐸𝐸𝛾𝛾2𝑡𝑡+1 , where 𝐵𝐵𝑡𝑡 is the matrix element connecting the resonance and decay product

12

𝜎𝜎𝐵𝐵𝐵𝐵,𝑎𝑎 𝑎𝑎,𝑏𝑏 𝑏𝑏(𝐸𝐸) ∝
Γ𝑎𝑎𝑎𝑎(𝐸𝐸)Γ𝑏𝑏𝑏𝑏(𝐸𝐸)

(𝐸𝐸 − 𝐸𝐸𝑅𝑅)2+(Γ(𝐸𝐸))2/4



Resonance widths

13

𝜎𝜎𝐵𝐵𝐵𝐵,𝑎𝑎 𝑎𝑎,𝑏𝑏 𝑏𝑏(𝐸𝐸) ∝
Γ𝑎𝑎𝑎𝑎(𝐸𝐸)Γ𝑏𝑏𝑏𝑏(𝐸𝐸)

(𝐸𝐸 − 𝐸𝐸𝑅𝑅)2+(Γ(𝐸𝐸))2/4

•Widths can have quite steep energy dependencies
•However, we have to pay attention to what 𝐸𝐸 we’re
talking about in Γ(𝐸𝐸)

•For a radiative capture, 𝐸𝐸𝑎𝑎𝑎𝑎 = 𝐸𝐸𝑅𝑅, 𝐸𝐸γ = 𝑄𝑄 + 𝐸𝐸𝑅𝑅
•Otherwise, 𝐸𝐸𝑎𝑎𝑎𝑎 = 𝐸𝐸𝑅𝑅, 𝐸𝐸𝑏𝑏𝑏𝑏 = 𝑆𝑆𝑏𝑏 + 𝐸𝐸𝑅𝑅
(where 𝑆𝑆𝑏𝑏 is the 𝑏𝑏 separation energy)

•Since 𝐸𝐸𝑅𝑅 ≪ 𝑄𝑄 and 𝐸𝐸𝑅𝑅 ≪ 𝑆𝑆𝑏𝑏, it’s clear that the incoming
particle width has a strong dependence on 𝐸𝐸𝑅𝑅,
but the outgoing width is relatively independent of 𝐸𝐸𝑅𝑅

•Note that there’s still the energy dependence from λ2

Rolfs & Rodney, Cauldrons in the Cosmos (1988)



Broad resonances

• When Γ/𝐸𝐸𝑅𝑅 > 10%,
this resonance is “broad”

• We’ll need to take these into account
in a different way when we
calculate the astrophysical reaction rate
in a future lecture

14
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Subthreshold resonances
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Rolfs & Rodney, Cauldrons in the Cosmos (1988)

• Just because an excited state is below a reaction 
threshold doesn’t mean it can’t contribute as a 
resonance to the total reaction rate

• As long as the low-energy tail overlaps the threshold, 
the resonance can occur

• This is called a “sub-threshold” resonance
(because another name would be pretty bizarrre)



Cross section features at low-ish energy (𝐸𝐸~𝑉𝑉𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡)

16
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The S-factor

• Often it’s useful to remove the trivial 
energy dependence from the cross 
section, in particular for charged-
particle reaction rates

• We’ll discuss this more when we cover 
nuclear astrophysics, but suffice it to say 
for now that for a charged particle 
reaction rate,
𝜎𝜎 𝐸𝐸 = 1

𝐸𝐸
𝑒𝑒−2𝜋𝜋η𝑆𝑆(𝐸𝐸), where 𝑆𝑆(𝐸𝐸) is the 

S-factor that contains all of the 
interesting physics

17
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Further Reading
• Chapter 11: Introductory Nuclear Physics (K.S. Krane)
• Chapter 2: Nuclear Physics of Stars (C. Iliadis)
• Chapter 4: Cauldrons in the Cosmos (C. Rolfs & W. Rodney)
• Chapter 17: Introduction to Special Relativity, Quantum Mechanics, and Nuclear Physics for 

Nuclear Engineers (A. Bielajew)
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