Short-Lived Radioisotope ^{98}Tc Synthesized by the Supernova Neutrino Process

T. Hayakawa et al.

Nuclear Lunch Questions: March 27, 2019

1. From where do the photons which initiate photodisintegration come from? [Yenuel]

2. Why is the solar abundance distribution normalized to Z_0 for progenitor star? [Shiv]

3. How did the reference [1,2] in paper conclude that 7Li, ^{19}Fe, ^{138}La, and ^{180}Ta as a ν isotopes? [Kristyn]

4. What is the cause of dip at 4 mass coordinate in Fig. 3 of the paper? [Matt]

5. How do they get the initial ^{98}Ru in the fraction calculation of $^{98}_{98}Tc / ^{98}Ru$ at SSF? [Joey]

6. How were the QRPA model and Hauser-Feshbach calculation used to calculate the cross-section. What level of uncertainty should be expected from it? [Som]

7. In Fig 2a, what could be responsible for the large portion of the total cross-section of electron antineutrinos ($\bar{\nu}_e$) on ^{100}Ru as its not totally from ^{98}Tc or ^{99}Tc? [Dough]

8. Why does MSW flavor change occur near the bottom of C/O rich layers? [Mahesh]

9. How does the reference [6,7] derive the energy hierarchy as $<\nu_e> < \bar{\nu}_e > < \nu_{\mu,\tau}, \bar{\nu}_{\mu,\tau}$? [Cole]