Graduate Studies in Nuclear Physics at

People:
Experimental Faculty: 10
Theoretical Faculty: 4
Technical Staff: 2
Post-doctoral Researchers: 2
Graduate Students: 17
Female faculty: 2

Department:
www.ohio.edu/cas/physastro/

Nuclear Physics:
inpp.ohiou.edu

Apply:
www.ohio.edu/cas/physastro/grad/admissions.cfm#ADMISSIONS

Department Admissions Contact:
Dr. Alexander Neiman
(740) 593-1701

Application Deadline:
January 15

Nuclear Physics Contact:
Dr. Daniel Phillips
(740) 593-1698
phillid1@ohio.edu

General Information:
Ohio University was founded in 1804, making it the first university established in Ohio, and the ninth oldest public university in the United States. Today, the enrollment on the Athens campus is approximately 23,700 students, of which about 4,000 are graduate students. Ohio University is made up of 11 colleges. Nuclear Physics studies take place within the Department of Physics and Astronomy, in the College of Arts and Sciences. The main campus is located in Athens, Ohio, along the scenic Hocking River in the southeastern part of the state.

Nuclear Physics Research Areas:
Nuclear Astrophysics
Nuclear Structure and Reactions
Relativistic Heavy Ions
Baryon and Meson Spectroscopy
Parity-Violating Electron Scattering
Internal Structure of the Nucleon
Applications of Nuclear Physics
Few-Body Systems
Effective Field Theory
Halo and Exotic Nuclei
Neutron Star Physics

Other Broad Research Areas in Department:
Condensed Matter Physics
Astronomy and Astrophysics
Biophysics
Institute of Nuclear and Particle Physics:
The Institute of Nuclear and Particle Physics was established at Ohio University in 1991 to bring coherence to the several successful but diverse nuclear and particle physics activities taking place within the Department of Physics and Astronomy, and to coordinate the activities of both theoretical and experimental subatomic physics.

Experimental Nuclear Physics Research:
This area covers low-energy experiments on nuclear astrophysics, nuclear structure and reactions, and applied nuclear physics; medium-energy experiments to study the structure of the nucleon and quark dynamics; and experiments with relativistic heavy ions to study nuclear matter under extreme conditions. These experiments are carried out at facilities around the world.

Theoretical Nuclear Physics Research:
Theoretical research explores the manifestations of strong-interaction dynamics in terrestrial experiments and astrophysical phenomena. Some examples are: (a) the chiral structure of the nucleon, electron scattering, and three-body scattering, (b) reactions involving nuclei near the neutron- and proton-drip lines, (c) neutron star structure, and (d) transport properties of hadronic matter.

Edwards Accelerator Laboratory:
Faculty and students perform some of their experiments at the Edwards Accelerator Laboratory on the Athens campus. It includes a 4.5-MV Van de Graaff accelerator with multiple ion sources, beamlines, and experimental areas for research in nuclear astrophysics, nuclear structure, and applications. For a complete description of facility equipment and capabilities, visit: inpp.ohiou.edu/~oual/.